Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6

СНиП 2.02.01-83 Основания зданий и сооружений. Часть 2

Таблица 7

Угол внутре-

Обоз- наче- 

Коэффициенты несущей способности Ng, Nq, Nc при углах наклона к вертикали равнодействующей внешней нагрузки d, град, равных

ннего грунта

jI, град

ние коэф- фици- ентов

 

0

 

5

 

10

 

15

 

20

 

25

 

30

 

35

 

40

 

45

 

0

Ng

Nq

Nc

0

1,00

5,14

 

-

 

-

 

-

 

-

 

-

 

-

 

-

 

-

 

-

 

5

Ng

Nq

Nc

0,20

1,57

6,49

 

d /=4,9

 

-

 

-

 

-

 

-

 

-

 

-

 

-

 

10

Ng

Nq

Nc

0,60

2,47

8,34

0,42

2,16

6,57

 

d /=9,8

 

-

 

-

 

-

 

-

 

-

 

-

 

15

Ng

Nq

Nc

1,35

3,94

10,98

1.02

3,45

9,13

0,61

2,84

6,88

 

d /=14,5

 

-

 

-

 

-

 

-

 

-

 

20

Ng

Nq

Nc

2,88

6,40

14,84

2,18

5,56

12,53

1,47

4,64

10,02

0,82

3,64

7,26

 

d /=18,9

 

-

 

-

 

-

 

-

 

25

Ng

Nq

Nc

5,87

10,66

20,72

4,50

9,17

17,53

3,18

7,65

14,26

2,00

6,13

10,99

1.05

4,58

7,68

 

d /=22,9

 

-

 

-

 

-

 

30

Ng

Nq

Nc

12,39

18,40

30,14

9,43

15,63

25,34

6,72

12,94

20,68

4,44

10,37

16,23

2,63

7,96

12,05

1,29

5,67

8,09

 

d /=26,5

 

-

 

-

 

35

Ng

Nq

Nc

27,50

33,30

46,12

20,58

27,86

38,36

14,63

22,77

31,09

9,79

18,12

24,45

6,08

13,94

18,48

3,38

10,24

13,19

 

d /=29,8

 

-

 

-

 

40

Ng

Nq

Nc

66,01

64,19

75,31

48,30

52,71

61,63

33,84

42,37

49,31

22,56

33,26

38,45

14,18

25,39

29,07

8,26

18,70

21,10

4,30

13,11

14,43

 

d /=32,7

 

-

 

45

Ng

Nq

Nc

177,61

134,87

133,87

126,09

108,24

107,23

86,20

85,16

84,16

56,50

65,58

64,58

32,26

49,26

48,26

20,73

35,93

34,93

11,26

25,24

24,24

5.45

16,42

15,82

 

d /=35,2

Примечания: 1. При промежуточных значениях jI и d  коэффициенты Ng, Nq, Nc допускается определять по интерполяции.

2. В фигурных скобках приведены значения коэффициентов несущей способности, соответствующие предельному значению угла наклона нагрузки d/, исходя из условия (19).

2.63. Расчет фундамента на сдвиг по подошве производится исходя из условия

          (20)

где и     - суммы проекций на плоскость скольжения соответственно расчетных сдвигающих и удерживающих сил, определяемых с учетом активного и пассивного давлений грунта на боковые грани фундамента;

                         gс и gn     - обозначения те же, что в формуле (11).

2.64. Расчет оснований по несущей способности допускается выполнять графоаналитическими методами (круглоцилиндрических или ломаных поверхностей скольжения), если:

а) основание не однородно по глубине;

б) пригрузка основания с разных сторон фундамента не одинакова, причем интенсивность большей из них превышает 0,5R (R- расчетное сопротивление грунта основания, определяемое в соответствии с    пп.2.41-2.48);

в) сооружение расположено на откосе или в близи откоса;

г) возможно возникновение нестабилизированного состояния   грунтов основания, за исключением случаев, указанных в п.2.65.

2.65. Предельное сопротивление основания (однородного ниже подошвы фундамента до глубины не менее 0,75b), сложенного медленно уплотняющимися водонасыщенными грунтами (п.2.61), допускается определять следующим образом.

Вертикальную составляющую силы предельного сопротивления основания ленточного фундамента nu, кН/м (тс/м), - по формуле

nu =[q + (1 + pa + cos a) cI]           (21)

где b/ -  обозначение то же, что в формуле (12), м;

   q - пригрузка с той стороны фундамента, в направлении которой действует горизонтальная составляющая нагрузки, кПа    (тс/м2 );

с1   -  обозначение то же, что в формуле (14), кПа (тс/м2);

p = 3,14;

          a   -  угол, рад, определяемый по формуле

a = arcsin (fh / bґcI),           (22)

здесь  fh   –  горизонтальная составляющая расчетной нагрузки на 1 м длины фундамента, определяемая с учетом активного давления грунта, кН/м (тс/м).

Формулу (21) допускается использовать, если выполняется условие

fh = bґс1.           (23)

Силу предельного сопротивления основания прямоугольного фундамента (l = 3b) при действии на него вертикальной нагрузки допускается определять по формуле (16), полагая jI = 0 и xc = 1 + 0,11h.

Во всех случаях, если на фундамент действуют горизонтальные нагрузки и основание сложено грунтами в нестабилизированном состоянии, следует производить расчет фундамента на сдвиг по подошве (п.2.63).

2.66. Устойчивость фундаментов на действие сил морозного пучения грунтов необходимо проверять, если основание сложено пучинистыми.

МЕРОПРИЯТИЯ ПО УМЕНЬШЕНИЮ ДЕФОРМАЦИЙ    ОСНОВАНИЙ И ВЛИЯНИЯ ИХ НА СООРУЖЕНИЯ

2.67. Для выполнения требований расчета оснований по предельным состояниям, кроме возможности и целесообразности изменения размеров фундаментов в плане или глубины их заложения (включая прорезку грунтов) с неудовлетворительными свойствами), введения дополнительных связей, ограничивающих перемещения фундаментов, применения других типов фундаментов, изменения нагрузок на основание и т.д., следует рассмотреть необходимость применения:

а) мероприятий по предохранению грунтов основания от ухудшения их свойств (п. 2.68);

б) мероприятий, направленных на преобразование строительных свойств грунтов (п. 2.69).

в) конструктивных мероприятий, уменьшающих чувствительность сооружений к деформациям (п. 2.70)

При проектировании следует также учитывать возможность регулирования усилий в конструкциях сооружения, возникающих при  его взаимодействии с основанием (п. 2.71).

Выбор одного или комплекса мероприятий должен производиться с учетом требований пп. 1.1 и 2.1.

2.68. К мероприятиям, предохраняющим грунты основания от ухудшения их строительных свойств, относятся:

а) водозащитные мероприятия на площадках, сложенных грунтами, чувствительными к изменению влажности (соответствующая   компоновка генеральных планов, вертикальная планировка территории, обеспечивающая сток поверхностных вод, устройство дренажей, противофильтрационных завес и экранов, прокладка водопроводов в специальных каналах или размещение их на безопасных расстояниях от сооружений, контроль за возможными утечками воды и т.п.);

б) защита грунтов основания от химически активных жидкостей, способных привести к просадкам, набуханию, активизации карстовосуффозионных явлений, повышению агрессивности подземных вод и т.п.;

в) ограничение источников внешних воздействий (например, вибраций);

г) предохранительные мероприятия, осуществляемые в процессе строительства сооружений (сохранение природной структуры и влажности грунтов, соблюдение технологии устройства оснований, фундаментов, подземных и надземных конструкций, не допускающей изменения принятой в проекте схемы и скорости передачи нагрузки на основание, в особенности при наличии в основании медленно консолидирующихся грунтов и т.п.)

2.69. Преобразование строительных свойств грунтов основания (устройство искусственных оснований) достигается:

а) уплотнением грунтов (трамбованием тяжелыми трамбовками, устройством грунтовых свай, вытрамбовыванием котлованов под фундаменты, предварительным замачиванием грунтов, использованием энергии взрыва, глубинным гидровиброуплотнением, вибрационными машинами, катками и т.п.)

б) полной или частичной заменой в основании (в плане и по    глубине) грунтов с неудовлетворительными свойствами подушками из песка, гравия, щебня и т.п.;

в) устройством насыпей (отсыпкой или гидронамывом);

г) закреплением грунтов (химическим, электрохимическим, буросмесительным, термическим и другими способами);

д) введением в грунт специальных добавок (например, засолением грунта или пропиткой его нефтепродуктами для ликвидации пучинистых свойств);

е) армированием грунта (введением специальных пленок, сеток и    т.п.)

2.70. Конструктивные мероприятия, уменьшающие чувствитель­ность сооружений к деформациям основания, включают:

а) рациональную компоновку сооружения в плане и по высоте;

б) повышение прочности и пространственной жесткости   соору­же­ний, достигаемое усилением конструкций, в особенности конструкций фундаментно-подвальной части, в соответствии с результатами расчета сооружения во взаимодействии с основанием (введение дополни­тель­ных связей в каркасных конструкциях, устройство железобетонных или армокаменных поясов, разрезка сооружений на отсеки и т.п.);

в) увеличение податливости сооружений (если это позволяют технологические требования) за счет применения гибких или разрезных конструкций;

г) устройство приспособлений для выравнивания конструкций сооружения и рихтовки технологического оборудования.

Примечание. Габариты приближения к строительным конструкциям подвижного технологического оборудования (мостовых кранов, лифтов и т.п.) должны обеспечивать их нормальную эксплуатацию с учетом возможных деформаций основания.

2.71. К мероприятиям, позволяющим уменьшить усилия в конструкциях сооружения при взаимодействии его с основанием, относятся:

размещение сооружения на площади застройки с учетом ее инженерно-геологического строения и возможных источников вредных влияний (линз слабых грунтов, старых горных выработок, карстовых полостей, внешних водоводов и т.п.);

применение соответствующих конструкций фундаментов (например, фундаментов с малой боковой поверхностью на подрабатываемых территориях и при наличии в основании пучинистых грунтов);

засыпка пазух и устройство подушек под фундаментами из материалов, обладающим малых сцеплением и трением, применение  специальных антифрикционных покрытий, отрывка временных компенсационных траншей для уменьшения усилий от горизонтальных деформаций оснований (например, в районах горных выработок); 

регулирование сроков замоноличивания стыков сборных и сборно-монолитных конструкций;

обоснованная скорость и последовательность возведения отдельных частей сооружения.

3. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ПРОСАДОЧНЫХ ГРУНТАХ

3.1. Основания, сложенные просадочными грунтами, должны проектироваться с учетом их особенности, заключающейся в том, что  при повышении влажности выше определенного уровня они дают дополнительные деформации – просадки от внешней нагрузки и (или) собственного веса грунта.

3.2. При проектировании оснований, сложенных просадочными грунтами, следует учитывать возможность повышения их влажности за счет:

а) замачивания грунтов – сверху из внешних источников и (или)   снизу при подъеме уровня подземных вод;

б) постепенного накопления влаги в грунте вследствие     инфильтрации поверхностных вод и экранирования поверхности.

Расчетным состоянием просадочных грунтов по влажности является:

При возможности их замачивания – полное водонасыщение   ( Sr = 0,8);

При невозможности их замачивания – установившееся значение влажности weq , принимаемое равным природной влажности w, если w= wp , и влажности на границе раскатывания, если w< wp.

3.3.  Просадочные грунты характеризуются:

относительной просадочностью esl – относительным сжатием    грунтов при заданном давлении после их замачивания;

начальным просадочным давлением psl  - минимальным давлением, при котором проявляются просадочные свойства грунтов при их    полном водонасыщении;

начальной просадочной влажностью wsl – минимальной влажностью, при которой проявляются просадочные свойства грунтов.

Значения esl  и psl определяются в соответствии с требованиями обязательного приложения 2.

3.4. При проектировании оснований, сложенных просадочными грунтами, должны учитываться:

а) просадки от внешней нагрузки ssl,p , происходящие в пределах верхней зоны просадки от подошвы фундамента до глубины, где суммарные вертикальные напряжения от внешней нагрузки и собственного веса грунта равны начальному просадочному давлению или сумма указанных напряжений минимальна;

б) просадки от собственного веса грунта ssl ,g , происходящие в   нижней зоне просадки, начиная с глубины, где суммарные вертикальные напряжения превышают начальное просадочное давление psl  или сумма вертикальных напряжений от собственного веса грунта и внешней нагрузки минимальна, и до нижней границы просадочной толщи;

в) неравномерность просадки грунтов Dssl ;

г) горизонтальные перемещения основания usl в пределах криволинейной части просадочной воронки при просадке грунтов от собственного веса.

Примечание. Просадки грунтов учитываются при относительной просадочности esl =0,01 и определяются в соответствии с указаниями обязательного приложения 2.

3.5. При определении просадок грунтов и их неравномерности   следует учитывать: инженерно-геологическое строение площадки; физико-механические характеристики грунтов основания и их неоднородность; размеры, глубину заложения и взаимное расположение фундаментов; нагрузки на фундаменты и прилегающие площади; конструктивные особенности сооружения, в частности наличие  тоннелей, подвалов под частью сооружения и т.п.; характер планировки территории (наличие выемок и срезки или насыпей и подсыпок,    которые оказывают влияние на напряженное состояние грунтов основания, а также на вид и размер просадок); возможные виды,  размеры и места расположения источников замачивания грунтов (п.3.2 а); дополнительные нагрузки на глубокие фундаменты, уплотненные и закрепленные массивы от сил негативного трения, возникающих при просадках грунтов от собственного веса.

Кроме того, необходимо учитывать, что при замачивании сверху больших площадей (ширина замачиваемой площади Bw равна или превышает размер просадочной толщи Hsl ) и замачивании снизу за счет подъема уровня подземных вод полностью проявляется просадка  от собственного веса ssl  ,g , а при замачивании сверху малых площадей (Bw < Hsl) проявляются лишь только часть ее  (см. п.17 обязательного приложения 2).

Примечание. При определении неравномерности просадок грунтов следует учитывать возможные наиболее неблагоприятные виды и места расположения источников замачивания по отношению к рассчитываемому фундаменту или сооружению в целом.

3.6. Грунтовые  условия площадок, сложенных просадочными грунтами, в зависимости от возможности проявления просадки грунтов от собственного веса, подразделяются на два типа:

I тип – грунтовые условия, в которых возможна в основном просадка грунтов от внешней нагрузки, а просадка грунтов от собственного веса отсутствует или не превышает 5 см;

II тип – грунтовые условия, в которых помимо просадки грунтов от внешней нагрузки возможна их просадка от собственного веса и размер ее превышает 5 см.

3.7. Расчет оснований, сложенных просадочными грунтами, производится в соответствии с требованиями разд.2.

При этом деформации основания определяются суммированием осадок и просадок. Осадки основания определяются без учета просадочных свойств грунтов исходя из деформационных характеристик грунтов при установившейся влажности, а просадки – в соответствии с требованиями пп. 3.2-3.5.

3.8. При проектировании оснований, сложенных просадочными грунтами, в случае их возможного замачивания (п. 3.2, а) должны предусматриваться мероприятия, исключающие или снижающие до допустимых пределов просадки оснований и (или) уменьшающие их влияние на эксплуатационную пригодность сооружений в соответствии   с указаниями пп. 3.12 и 3.13.

В случае невозможности замачивания основания в течение всего срока эксплуатации сооружения (с учетом его возможной реконструкции) просадочные свойства грунтов допускается не учитывать, однако в расчетах должны использоваться физико-механические характеристики грунтов, соответствующие  установившейся влажности (п. 3.2).

3.9. Расчетное сопротивление грунта основания при возможном замачивании просадочных грунтов (п. 3.2, а) принимается равным:

а) начальному просадочному давлению psl  при устранении возможности просадки грунтов от внешней нагрузки путем снижения давления под подошвой фундамента;

б) значению, вычисленному по формуле (7) с использованием расчетных значений прочностных характеристик (jII  и сII) в водонасыщенном состоянии.

При невозможности замачивания просадочных грунтов расчетное сопротивление грунта основания R определяется по формуле (7) с использованием прочностных характеристик этих грунтов при установившейся влажности (п. 3.2)

3.10. Предварительные размеры фундаментов сооружений, возводимых на просадочных грунтах, назначаются исходя из расчетных сопротивлений основания R0 , принимаемых по табл. 4 рекомендуемого приложения 3.

Указанными значениями R0  допускается пользоваться также для назначения окончательных размеров фундаментов зданий и сооружений III класса, в которых отсутствует мокрый технологический процесс.

3.11. Требования расчета оснований по деформациям в грунтовых условиях I типа считаются удовлетворенными, если в пределах всей просадочной толщи сумма вертикальных напряжений от внешней нагрузки и от собственного веса грунта не превышает начального просадочного давления psl .

3.12*. При возможности замачивания грунтов основания (п.3.2) следует предусматривать одно из мероприятий:

а) устранение просадочных свойств грунтов в пределах всей просадочной толщи (пп. 2.69 и 3.13);

б) прорезку просадочной толщи глубокими фундаментами, в том числе свайными и массивами из закрепленного грунта (пп. 2.67 и 3.14);

в) комплекс мероприятий, включающий частичное устранение просадочных свойств грунтов, водозащитные и конструктивные мероприятия (пп. 2.67-2.71).

В грунтовых условиях II типа наряду с устранением просадочных свойств грунтов или прорезкой просадочной толщи глубокими фундаментами должны предусматриваться водозащитные мероприятия,  а также соответствующая компоновка генплана.

Выбор мероприятий должен производиться с учетом типа грунтовых условий, вида возможного замачивания, расчетной просадки, взаимосвязи проектируемых сооружений с соседними объектами и коммуникациями в соответствии с требованиями        п. 1.1.

Примечания: 1. Устранение просадочных свойств грунтов (подпункт «a») в грунтовых условиях I типа допускается выполнять только в пределах части верхней зоны просадки, но не менее 2/3 ее высоты, если конструкции сооружения  рассчитаны на возможные деформации основания, а просадки и их    неравномерность не превышают 50% предельных деформаций основания для  данного сооружения.

2*.Значения предельных деформаций оснований, приведенные в    рекомендуемом приложении 4, не распространяются на сооружения, запроектированные с применением комплекса мероприятий по п.3.12, в.   Предельный крен жилых и общественных зданий при применении комплекса мероприятий допускается принимать равным:

iu = 0,008 – для зданий, не оборудованных лифтами, а также если проектом предусмотрены специальные мероприятия по рихтовке направляющих лифтовых шахт;

iu = 0,005 – если указанные мероприятия не предусмотрены.

3.13. Устранение просадочных свойств грунтов достигается:

а) в пределах верхней зоны просадки или ее части уплотнением тяжелыми трамбовками, устройством грунтовых подушек, вытрамбовыванием котлованов, в том числе с устройством уширения из жесткого материала, химическим или термическим закреплением;

б) в пределах всей просадочной толщи – глубинным уплотнением грунтовыми сваями, предварительным замачиванием грунтов  основания, в том числе с глубинными взрывами, химическим или термическим закреплением.

3.14. При проектировании глубоких фундаментов следует учитывать:

в грунтовых условиях I типа – сопротивление грунта по боковой поверхности фундаментов;

в грунтовых условиях II типа – негативное трение грунта по боковой поверхности фундаментов, возникающее при просадке грунтов от собственного веса.

4.ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА НАБУХАЮЩИХ ГРУНТАХ

4.1. Основания, сложенные набухающими грунтами, должны проектироваться с учетом способности таких грунтов при повышении влажности увеличиваться в объеме – набухать. При последующем понижении влажности у набухающих грунтов происходит обратный процесс – усадка.

Необходимо учитывать, что способностью набухать при увеличении влажности обладают некоторые виды шлаков (например, шлаки электроплавильных производств), а также обычные пылевато-     глинистые грунты (ненабухающие при увеличении влажности), если     они замачиваются химическими отходами производств (например, растворами серной кислоты).

4.2. Набухающие грунты характеризуются давлением набухания psw , влажностью набухания wsw , относительным набуханием при заданном давлении esw  и относительной усадкой  при высыхания esh .

Указанные характеристики определяются в соответствии с требованиями обязательного приложения 2.

4.3. При проектировании оснований, сложенных набухающими грунтами, следует учитывать возможность:

набухания этих грунтов за счет подъема уровня подземных вод или инфильтрации – увлажнения грунтов производственными или поверхностными водами;

набухания за счет накопления влаги под сооружениями в ограниченной по глубине зоне вследствие нарушения природных  условий испарения при застройке и асфальтировании территории (экранирование поверхности);

набухания и усадки грунта в верхней части зоны аэрации – за счет изменения водно-теплового режима (сезонных климатических   факторов);

усадки за счет высыхания от воздействия тепловых источников.

Примечание. При проектировании заглубленных частей сооружений должны учитываться горизонтальные давления, возникающие при набухании и усадке грунтов.

4.4. Основания, сложенные набухающими грунтами, должны рассчитываться в соответствии с требованиями разд.2.

Деформации основания в результате набухания или усадки грунта должны определяться путем суммирования деформаций отдельных   слоев основания согласно указаниям обязательного приложения 2.

При определении деформаций основания осадка его от внешней нагрузки и возможная осадка от уменьшения влажности набухающего грунта должны суммироваться. Подъем основания в результате набухания грунта определяется в предположении, что осадки основания от внешней нагрузки стабилизировались.

Предельные значения деформаций, вызываемых набуханием (усадкой) грунтов, допускается принимать в соответствии с указаниями рекомендуемого приложения 4 с учетом требований п. 2.55.

4.5. Нормативные значения относительного набухания esw и относительной усадки esh  определяются по результатам лабораторных испытаний с учетом указанных в п. 4.3 причин набухания или усадки.

Расчетные значения характеристик esw  и  esh  допускается принимать равными нормативным, полагая в формуле (1) коэффициент надежности по грунту vg =1.

4.6. При расчетных деформациях основания, сложенного набухающими грунтами, больше предельных или недостаточной  несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп. 2.67-2.71:

водозащитные мероприятия;

предварительное замачивание основания в пределах всей или части толщи набухающих грунтов;

применение компенсирующих песчаных подушек;

полная или частичная замена слоя набухающего грунта ненабухающим;

полная или частичная прорезка фундаментами слоя набухающего грунта.

5. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ВОДОНАСЫЩЕННЫХ БИОГЕННЫХ ГРУНТАХ И ИЛАХ

5.1. Основания, сложенные водонасыщенными биогенными   грунтами (заторфованными, торфами и сапропелями) и илами или включающие эти грунты, должны проектироваться с учетом их большой сжимаемости, медленного развития осадок во времени и возможности в связи с этим возникновения нестабилизированного состояния, существенной изменчивости и анизотропии прочностных, деформационных и фильтрационных характеристик и изменения их в процессе консолидации основания, а также значительной тиксотропии илов.

Следует учитывать также, что подземные воды в биогенных грунтах     и илах, как правило, сильно агрессивны к материалам подземных конструкций.

5.2. Деформационные, прочностные и фильтрационные характеристики биогенных грунтов и илов должны определяться при давлении или в диапазоне давлений, соответствующих напряженному состоянию основания проектируемого сооружения.

Характеристики биогенных грунтов и илов должны устанавливаться при испытаниях образцов грунта в вертикальном и горизонтальном направлениях.

5.3. Расчет оснований, сложенными биогенными грунтами и илами, должен производиться в соответствии с требованиями разд.2 с учетом скорости передачи нагрузки на основание, изменения эффективных напряжений в грунте в процессе консолидации основания, анизотропии свойств грунтов. При этом допускается использовать методы теории линейной консолидации грунтов.

Примечание. Анизотропию свойств биогенных грунтов и илов допускается не учитывать, если значения характеристик для вертикального и горизонтального направлений отличаются не более чем на 40%.

5.4. Опирание фундаментов непосредственно на поверхность сильнозаторфованных грунтов, торфов, слабоминеральных сапропелей и илов не допускается.

Если непосредственно под подошвой фундамента залегает слой  грунта с модулем деформации Е< 5 МПа (50 кгс/см2) толщиной более ширины фундамента, осадка основания должна определяться с учетом полного давления под подошвой фундамента.

5.5. При расчетных деформациях основания, сложенного   биогенными грунтами и илами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп. 2.67-2.71:

полная или частичная прорезка слоев биогенных грунтов и илов глубокими фундаментами;

полная или частичная замена биогенного грунта или ила песком, гравием, щебнем и т.д.;

уплотнение грунтов временной или постоянной пригрузкой основания сооружения или всей площадки строительства насыпным (намывным) грунтом или другим материалом (с устройством фильтрующего слоя или дрен при необходимости ускорения процесса консолидации основания);

закрепление илов буросмесительным способом.

5.6. Проектирование пригрузки должно производиться с учетом требований п.5.3. При этом должны быть установлены толщина,    размеры в плане пригрузочного слоя и время, необходимые для достижения заданной степени консолидации основания, а также   конечная осадка основания под пригрузкой.

6.ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЭЛЮВИАЛЬНЫХ ГРУНТАХ

6.1. Основания, сложенные элювиальными грунтами – продуктами выветривания скальных пород, оставшимися на месте своего  образования и сохранившими в той или иной степени структуру и текстуру исходных пород, должны проектироваться с учетом:

их значительной неоднородности по глубине и в плане из-за      наличия грунтов с большим различием их прочностных и деформационных характеристик – скальных разной степени   выветрелости  и различных типов нескальных грунтов;

склонности к снижению прочности элювиальных грунтов (особенно крупнообломочных и сильновыветрелых  скальных) во время их преобразования в открытых котлованах;

возможности перехода в плывунное состояние элювиальных супесей  и пылеватых песков в случае их водонасыщения в период устройства котлованов и фундаментов;

возможным наличием просадочных свойств у элювиальных пылеватых песков  с коэффициентом пористости е > 0,6 и степенью влажности Sr < 0,7.

6.2. Возможность и степень снижения прочности элювиальных грунтов основания во время пребывания их открытыми в котловане должны устанавливаться опытным путем в полевых условиях. Допускается проводить определения в лабораторных условиях на специально отобранных образцах (монолитах) грунта.

Для предварительной оценки возможного снижения прочности элювиальных грунтов допускаются косвенные методы, учитывающие изменение в течение заданного периода времени: плотности скальных грунтов; удельного сопротивления пенетрации пылевато-глинистых грунтов; содержания частиц размером менее 0,1 мм в песчаных и менее  2 мм в крупнообломочных грунтах.

6.3. Расчет оснований, сложенных элювиальными грунтами, должен производиться в соответствии с требованиями разд.2. Если     элювиальные грунты являются просадочными, следует учитывать требования разд.3.

6.4. При расчетных деформациях основания, сложенного элювиальными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с указаниями пп. 2.67-2.71:

устройство уплотненных грунтовых распределительных подушек из песка, гравия, щебня или крупнообломочных грунтов с обломками исходных горных пород, в частности при неровной поверхности   скальных грунтов;

удаление из верхней зоны основания включений скальных грунтов, полную или частичную замену рыхлого заполнения «карманов» и «гнезд» выветривания в скальных грунтах щебнем, гравием или песком с уплотнением.

6.5. В проекте оснований и фундаментов должна предусматриваться защита элювиальных грунтов от разрушения атмосферными воздействиями и водой в период устройства котлованов. Для этой цели следует применять водозащитные мероприятия, не допускать перерывы   в устройстве оснований и последующем возведении фундаментов; предусматривать недобор грунта в котловане; применять взрывной способ разработки скальных грунтов лишь при условии мелкошпуровой отпалки.

7. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЗАСОЛЕННЫХ ГРУНТАХ

7.1. Основания, сложенные засоленными грунтами, должны проектироваться с учетом их особенностей, обусловливающих:

образование при длительной фильтрации воды и выщелачивания солей суффозионной осадки ssf ;

изменение в процессе выщелачивания солей физико-механических свойств грунта, сопровождающееся, как правило, снижением его прочностных характеристик;

набухание или просадку грунтов при замачивании;

повышенную агрессивность подземных вод к материалам подземных конструкций за счет растворения солей, содержащихся в грунте.

7.2. Засоленные грунты характеризуются относительным суффози­он­ным сжатием esf, определяемым, как правило, полевыми испытаниями статической нагрузкой с длительным замачиванием, а для детального изучения отдельных участков строительной площадки – дополнительно лабораторными методами (компрессионно-фильтрационными испытаниями).

При наличии результатов изысканий и опыта строительства в аналогичных инженерно-геологических условиях относительное суффозионное сжатие допускается определять только лабораторными методами.

7.3. Нормативное значение esf  следует определять в соответствии с требованиями обязательного приложения 2.

Расчетное значение esf  допускается принимать равным  норматив­ному значению, полагая в формуле (1) коэффициент надежности по грунту gg =1.

7.4. Расчет оснований, сложенных засоленными грунтами, должен производиться в соответствии с требованиями разд. 2. Если засоленные грунты являются просадочными или набухающими, следует учитывать соответственно требования разд. 3 и 4.

Деформации основания необходимо определять с учетом осадки от внешней нагрузки, просадки, набухания или усадки и суффозионной осадки.

Суффозионную осадку следует определять в соответствии с указаниями обязательного приложения 2.

При отсутствии возможности длительного замачивания грунтов и выщелачивания солей деформации основания определяются как для незасоленных грунтов исходя из деформационных характеристик    грунтов при полном водонасыщении.

7.5. Расчетное сопротивление R основания, сложенного засолен­ными грунтами, при возможности длительного замачивания грунтов и выщелачивания солей вычисляется по формуле (7) с использованием расчетных значений прочностных характеристик (jII и сII ), полученных для грунтов в водонасыщенном состоянии после выщелачивания солей.

При невозможности длительного замачивания грунтов и выщелачивания солей расчетное сопротивление основания следует определять по формуле (7) с использованием прочностных  характеристик, полученных для засоленных грунтов в водонасыщенном состоянии.

7.6. При расчетных деформациях основания, сложенного  засоленными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться водозащитные мероприятия и в случае необходимости следующие мероприятия в соответствии с указаниями пп. 2.67-2.71:

конструктивные мероприятия;

частичная или полная срезка засоленных грунтов с устройством подушки из пылевато-глинистых грунтов;

прорезка толщи засоленных грунтов глубокими фундаментами;

закрепление или уплотнение грунтов;

предварительное рассоление грунтов;

комплекс мероприятий, включающих водозащитные и конструктивные мероприятия, а также устройство грунтовой подушки.

8. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА НАСЫПНЫХ ГРУНТАХ

8.1. Основания, сложенные насыпными грунтами, должны проектироваться с учетом их значительной неоднородности по составу, неравномерной сжимаемости, возможности самоуплотнения, особенно при вибрационных воздействиях, изменении гидрогеологических  условий, замачивании, а также за счет разложения органических включений.

Примечание. В насыпных грунтах, состоящих из шлаков и глин, необходимо учитывать возможность их набухания при замачивании водой или химическими отходами производств.

8.2. Неравномерность сжимаемости насыпных грунтов должна определяться по результатам полевых и лабораторных исследований, выполняемых с учетом состава и сложения насыпных грунтов, способа отсыпки, вида материала, составляющего основную часть насыпи. Модуль деформации насыпных грунтов, как правило, должен определяться на основе штамповых испытаний.

8.3. Основания, сложенные насыпными грунтами, должны рассчитываться в соответствии с требованиями разд. 2. Если насыпные грунты являются просадочными, набухающими или имеют относительное содержание органического вещества Iот > 0,1, следует учитывать соответственно требования разд. 3-5.

Полная деформация основания должна определяться суммированием осадок основания от внешней нагрузки и дополнительных осадок от самоуплотнения насыпных грунтов и разложения органических включений, а также осадок (просадок) подстилающих грунтов от веса насыпи и нагрузок от фундамента.

8.4. Расчетное сопротивление основания, сложенного насыпными грунтами, определяется в соответствии с требованиями пп. 2.41-2.48.

Предварительные размеры фундаментов сооружений, возводимых на слежавшихся насыпных грунтах, допускается назначать исходя из значений расчетных сопротивлений грунтов основания R0  по рекомендуемому приложению 3.

Значениями R0 допускается пользоваться также и для назначения окончательных размеров фундаментов зданий и сооружений III класса.

8.5. При расчетных деформациях основания, сложенного насыпными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с требованиями пп. 2.67-2.71:

поверхностное уплотнение оснований тяжелыми трамбовками, вибрационными машинами, катками;

глубинное уплотнение грунтовыми сваями, гидровиброуплотнение;

устройство грунтовых подушек (песчаных, щебеночных, гравийных и т.п.);

прорезка насыпных грунтов глубокими фундаментами;

конструктивные мероприятия.

9. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ

9.1. Основания сооружений, возводимых на подрабатываемых территориях, должны проектироваться с учетом неравномерного оседания земной поверхности, сопровождаемого горизонтальными деформациями сдвигающегося грунта в результате производства горных работ и перемещения грунта в выработанное пространство.

Параметры деформаций земной поверхности, в том числе кривизна поверхности, ее наклоны и горизонтальные перемещения, а также вертикальные уступы должны определяться в соответствии с требованиями СНиП по проектированию зданий и сооружений на подрабатываемых территориях. Эти параметры, являющиеся основой   для расчета оснований, фундаментов и надфундаментных конструкций сооружений, должны учитываться при назначении расчетных значений характеристик грунта.

9.2. Расчетные значения прочностных и деформационных характеристик грунта для определения усилий, действующих на фундаменты в результате деформаций земной поверхности, следует принимать равными нормативным, полагая в формуле (1) коэффициент надежности по грунту gg = 1.

Значение модуля деформации грунта в горизонтальном направлении Еh допускается принимать равным 0,5 для пылевато-глинистых грунтов     и 0,65 - для песчаных грунтов от значения модуля деформации грунта в вертикальном направлении Е .

9.3. Расчетные сопротивления грунтов основания R должны определяться в соответствии с требованиями пп. 2.41. - 2.48. При этом коэффициент условий работы gc2 в формуле (7) для сооружений жесткой конструктивной схемы, имеющих поэтажные и фундаментный пояса с замкнутым контуром, следует принимать по табл. 8; в остальных случаях  -  gс2 = 1.

Таблица 8

 

Грунты

Коэффициент gс2   для сооружений с жесткой конструктивной схемой при отношении длины сооружения или отсека к его высоте L/Н

 

L/H ³ 4

4 > L/H >2,5

2,5³ L/H> 1,5

L/H ³ 1.5

Крупнообломочные с песча- ным заполнителем и песчаные, кроме мелких и пылеватых

1,4

1,7

2,1

2,5

Пески мелкие

1,3

1,6

1,9

2,2

Пески пылеватые

1,1

1,3

1,7

2,0

Крупнообломочные с пыле- ватоглинистым заполнителем и пылевато-глинистые с показа­телем текучести IL £0.5

1,0

1,0

1,1

1,2

Крупнообломочные с пыле- ватоглинистым заполнителем и пылевато-глинистые с показа­телем текучести IL >0.5

1,0

1,0

1,0

1,0

9.4. Краевое давление на грунт под подошвой фундаментов, в том числе плитных, должно определяться с учетом дополнительных  моментов, вызываемых деформацией земной поверхности при подработке.

Краевое давление не должно превышать 1,4R и в угловой точке -     1,5R,  а равнодействующая нагрузок не должна выходить за пределы    ядра сечения подошвы фундамента.

9.5. Расчет деформаций оснований допускается не производить в случаях, указанных в табл. 6, а также, если конструкции сооружений проектируются с учетом неравномерного оседания земной поверхности.

На площадках, сложенных просадочными грунтами, конструкции сооружений должны проектироваться с учетом возможного совместного воздействия на них деформаций от подработок и просадок грунтов.

9.6. Для сооружений, возводимых на подрабатываемых территориях, должны применяться фундаменты следующих конструктивных схем:

жесткой (плитные, ленточные с железобетонными поясами, столбчатые со связями-распорками между ними и т.п.);

податливой (фундаменты с горизонтальными швами скольжения между отдельными элементами, фундаменты с вертикальными элементами, имеющими возможность наклоняться при горизонтальных перемещениях грунта);

комбинированной (жесткие фундаменты, имеющие шов скольжения ниже уровня планировки или пола подвала).

Конструктивная схема фундамента должна приниматься в зависимости от расчетных деформаций земной поверхности, жесткости надфундаментных конструкций, деформативности грунтов оснований и пр.

Примечание. Для зданий повышенной этажности и башенного типа применение наклоняющихся фундаментов не допускается.

9.7. На площадках, сложенных грунтами с модулем деформации           Е < 10 МПа (100 кгс/см2), а также при возможности резкого ухудшения строительных свойств грунтов основания вследствие изменения гидрогеологических условий площадки при подработке рекомендуется принимать свайные или плитные фундаменты.

Если в верхней зоне основания залегают слои ограниченной    толщины насыпных, биогенных и просадочных грунтов, следует предусматривать прорезку этих слоев фундаментами.

9.8. К основным мероприятиям, снижающим неблагоприятное воздействие деформаций земной поверхности на фундаменты и конструкции сооружений, относятся:

а) уменьшение поверхности фундаментов, имеющей контакт с грунтом;

б) заложение фундаментного пояса на одном уровне в пределах  отсека сооружения;

в) устройство грунтовых подушек на основаниях, сложенных практически несжимаемыми грунтами;

г) размещение подвалов и технических подполий под всей площадью отсека сооружения;

д) засыпка грунтом пазух котлованов и выполнение грунтовых подушек из материалов, обладающих малым сцеплением и трением на контакте с поверхностью фундаментов;

е) отрывка перед подработкой временных компенсационных    траншей по периметру сооружения.

10. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ СООРУЖЕНИЙ, ВОЗВОДИМЫХ В СЕЙСМИЧЕСКИХ РАЙОНАХ

10.1. Основания сооружений, возводимых в районах с   сейсмичностью 7,8 и 9 баллов, должны проектироваться с учетом требований СНиП по проектированию зданий и сооружений в сейсмических районах.

В районах с сейсмичностью менее 7 баллов основания следует проектировать без учета сейсмических воздействий.

10.2. Проектирование оснований с учетом сейсмических воздействий должно выполняться на основе расчета по несущей способности на особое сочетание нагрузок, определяемых в соответствии с  требованиями СНиП по нагрузкам и воздействиям, а также по проектированию зданий и сооружений в сейсмических районах.

Предварительные размеры фундаментов допускается определять расчетом основания по деформациям на основное сочетание нагрузок (без учета сейсмических воздействий) согласно требованиям разд. 2.

10.3. Расчет оснований по несущей способности выполняется на действие вертикальной составляющей внецентренной нагрузки, передаваемой фундаментом, исходя из условия

Nа £ gс,еq Nu,eq / gn,            (24)

Где Nа - вертикальная составляющая расчетной внецентренной      нагрузки в особом сочетании;

   Nu,eq  -   вертикальная      составляющая      силы     предельного сопротивления основания при сейсмических воздействиях;

gс,eq   -  сейсмический      коэффициент    условий    работы, принимаемый равным 1,0; 0,8; 0,6 соответственно для грунтов I, II и III категорий по сейсмическим свойствам, причем для сооружений, возводимых в районах с повторяемостью землетрясений 1, 2 и 3, значение gс,eq следует умножать на 0,85; 1,0 и 1,15 соответственно (категории грунтов по сейсмическим свойствам и повторяемость землетрясений определяются в соответствии со СНиП по проектированию и строительству в сейсмических районах);

gn    -   коэффициент  надежности  по  назначению сооружения, принимаемый по указаниям п. 2.58.

Горизонтальная составляющая нагрузки учитывается при расчете фундамента на сдвиг по подошве.

10.4. При действии моментных нагрузок в двух направлениях расчет основания по несущей способности должен выполняться раздельно на действие сил и моментов в каждом направлении независимо друг от друга.

10.5. При расчете оснований и фундаментов на особое сочетание нагрузок с учетом сейсмических воздействий допускается частичный отрыв подошвы фундамента от грунта при выполнении следующих условий:

эксцентриситет еа расчетной нагрузки не превышает одной трети ширины фундамента в плоскости момента;

сила предельного сопротивления основания определяется для условного фундамента, размер подошвы которого в направлении действия момента равен размеру сжатой зоны

bc = 1,5 (b - 2eа);

максимальное краевое давление под подошвой фундамента, вычисленное с учетом его неполного опирания на грунт, не превышает краевой ординаты эпюры предельного сопротивления основания.

10.6. Глубина заложения фундаментов в грунтах, относимых по их сейсмическим свойствам согласно СНиП по проектированию зданий и сооружений в сейсмических районах к I и II категориям, принимается,  как правило, такой же, как для фундаментов в несейсмических районах.

На площадках, сложенных грунтами III категории по сейсмическим свойствам, рекомендуется предусматривать устройство искусственных оснований (п. 2.69).

10.7. При невозможности заглубления фундаментов здания или   отсека на одном уровне в нескальных грунтах должно выполняться условие (4), в котором расчетное значение угла внутреннего трения грунта должно быть уменьшено при сейсмичности: 7 баллов - на 20,  8 баллов - на 40 и 9 баллов - на 70.

11. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ОПОР ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ

11.1. Требования настоящего раздела должны соблюдаться при проектировании оснований опор воздушных линий электропередачи и опор открытых распределительных подстанций напряжением от 1кВ и выше.

Примечание. По характеру нагружения опоры подразделяются на промежуточные, анкерные и угловые. Опоры, применяемые в единичных случаях,     а также на больших переходах, называются специальными.

11.2. Расчетные характеристики грунтов должны устанавливаться в соответствии с требованиями пп. 2.12 - 2.14.

При расчете оснований по деформациям значение коэффициента надежности по грунту gg допускается принимать равным единице. Для массовых опор нормативные значения характеристик допускается принимать по таблицам рекомендуемого приложения 1, причем  значения сn,jn и Е, приведенные для пылевато-глинистых грунтов с показателем текучести 0,5 < IL £ 0,75, допускается принимать до   диапазона 0,5  <  IL  £ 1,0.

При расчете оснований по несущей способности значение коэффициента надежности по грунту следует принимать по табл. 9.

Таблица 9

 

 

Коэффициент надежности по грунту gg

Для определения расчетных значений

Грунты

Плотности

рI

угла внут- реннего тре-

ния jI

удельного

сцепления

сI

Песчаные

1,0

1,1

4,0

Супеси при показателе текучести

I£ 0,25, суглинки и глины I£ 0,5

1,0

1,1

2,4

Супеси при показателе текучести

IL  > 0,25, суглинки и глины IL  > 0,5

1,0

1,1

3,3

11.3. Расчет оснований по деформациям и несущей способности должен проводиться для всех режимов работы опор. Динамическое действие порывов ветра на конструкцию опоры учитывается лишь при расчете оснований по несущей способности.

Предельные значения осадок и крена отдельных блоков фундаментов при их загружении сжимающими нагрузками следует принимать по рекомендуемому приложению 4.

11.4. Расчет оснований, сложенных пучинистыми грунтами, по несущей способности должен выполняться с учетом одновременного действия сил морозного пучения, постоянных и длительных временных нагрузок. Расчет оснований опор на одновременное действие сил морозного пучения и кратковременных нагрузок (ветровых и от обрыва проводов) не требуется.

11.5. Расчет деформаций оснований выдергиваемых фундаментов и анкерных плит по деформациям может не выполняться, если выдергивающая сила центральна по отношению к подошве фундамента (анкерной плите) и соблюдается условие

,           (25)

где Fn  -    нормативное значение выдергивающей силы, кН (кгс);

      Gn   -   нормативное   значение   веса  фундамента или плиты, кН    (кгс);

       b   -   угол наклона выдергивающей силы к вертикали, град;

      gс     -   коэффициент        условий        работы,    определяемый     в соответствии с указаниями п.  11.6;

     -  расчетное сопротивление грунта обратной засыпки, кПа (кгс/см2), принимаемое по табл. 6 рекомендуемого приложения 3;

      А0  -   площадь  проекции  верхней  поверхности фундамента на плоскость, перпендикулярную линии действия выдергивающей силы, м2 (см2).

11.6. Коэффициент условий работы  gс в формуле (25) принимается равным:

gc = g1 g2 g3 g4

где g1 = 1,2; 1,0 и 0,8 - для опор с базой В (расстояние между осями отдельных фундаментов), равной 5; 2,5 и 1,5 м; при промежуточных значениях В значение g1 определяется по интерполяции;

g2 = 1,0 для нормального и g2 = 1,2 - для аварийного и монтажного режимов работы;

g3 = 1,0; 0,8 и 0,7 - соответственно для опор: промежуточных прямых; промежуточных угловых, анкерных и анкерно-угловых, концевых и порталов распределительных устройств; специальных;

g4 = 1,0 и 1,15 -соответственно для: грибовидных фундаментов и анкерных плит опор с оттяжками, стойки которых защемлены в грунте; анкерных плит опор, стойки которых шарнирно оперты на фундаменты.

11.7. Расчетное сопротивление грунта основания R под подошвой сжато-опрокидываемых фундаментов определяется по формуле (7) при коэффициенте gс2 =1.

Наибольшее давление на грунт под краем подошвы фундамента при действии вертикальной сжимающей и горизонтальных нагрузок в одном или в двух  направлениях не должно превышать 1,2R.

11.8. Расчет оснований по несущей способности при действии на фундамент (анкерную плиту) выдергивающей нагрузки производится исходя из условия

          (26)

где  F     -   расчетное значение выдергивающей силы кН (кгс);

       gf  - коэффициент надежности по нагрузке, принимаемый                    равным 0,9;

     Gn    -   нормативное  значение  веса   фундамента   (плиты), кН    (кгс);

      b      -    угол  наклона   выдергивающей   силы  к  вертикали, град.;

       gс  -  коэффициент  условий работы, принимаемый равным единице;

  Fu,a  -  сила    предельного   сопротивления   основания выдергиваемого фундамента, кН (кгс), определяемая в соответствии с указаниями п. 11.9;

     gn   -   коэффициент      надежности     по     назначению, принимаемый равным для опор:

промежуточных прямых                                                                          - 1,0;

анкерных прямых без разности тяжений                                                   - 1,2;

угловых (промежуточных и аркерных), анкерных (прямых и концевых)    - 1,3;

с разностью тяжений, порталов открытых распределительных устройств  

специальных                                                                                            - 1,7.

11.9. Силу предельного сопротивления основания выдергиваемого фундамента Fu,a следует определять по формуле

Fu, а =gbf (Vbf - Vf) cosb + c0 [A1cos (j0 -

                 - b / 2) + A2cos (j0  + b / 2) + 2A3cosj0],          (27)

где  gbf  - расчетное значение удельного веса грунта обратной засыпки, кН / м3 (кгс / см3);

             Vbf - объем, м3 (см3), тела выпирания в форме усеченной пирамиды, образуемой плоскостями, проходящими через кромки верхней поверхности фундамента (плиты) и наклоненными к вертикали под углами Ji , равными:

у нижней кромки J1 = j0 + в / 2;

у верхней кромки J2 = j0 - в / 2;

у боковых кромок J3 = J4 = j0;

          Vf    –    объем   части   фундамента,    находящейся  в пределах  тела выпирания, м3 (см3); для анкерных плит принимается Vf = = 0;

А1, А2, А3 –     площади     граней     тела     выпирания,    имеющих   в основании соответственно нижнюю, верхнюю и  боковые кромки верхней поверхности фундамента (плиты);

с0 и j0   –   расчетные   значения   удельного   сцепления,    кПа (кгс/см2), и угла внутреннего трения грунта обратной засыпки, град, принимаемые равными:

с0 = hсI;   j0 = hjI;           (28)

здесь сI и jI – расчетные значения соответственно удельного сцепления и угла внутреннего трения грунта природного сложения, определяемые в соответствии с указаниями п. 11.2;

                      h   –   коэффициент, принимаемый по табл. 10.

 

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6




Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!

Все СНиПы >>    СНиПы «Строительство, ремонт, монтаж >>



Смотрите также: Каталог «Строительство, ремонт, монтаж» >>
Компании «Строительство, ремонт, монтаж» >>
Статьи (432) >>
ГОСТы (116) >>
СНиПы (94) >>
СанПиНы (14) >>
Нормативные документы (13) >>
ВСН (38) >>
Подписка на рассылки >>
Задать вопрос в форуме >>
Форум "Строительство коттеджей, дачных домов, бань, гаражей" >>
Форум "Деревянные дома и бани" >>
Форум "Дома из кирпича и строительных блоков" >>
Форум "Каркасные дома" >>
Форум "Гаражи, беседки, хоз.постройки, заборы, ворота" >>
Форум "Отчеты и фото о строительстве" >>
Форум "Нормативные документы по строительству" >>
Форум "Фундамент, расчет фундамента, грунты, заливка фундамента" >>
наверх