Все СНиПы >> СНиПы«Бетон, ЖБИ, кирпич, фасадные материалы»

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6    |    Часть 7    |    Часть 8    |    Часть 9

Пособие к СНиП 2.03.01-84 по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов.

Центральный Ордена Трудового

научно-исследовательский Красного Знамени

и проектно-экспериментальный научно-исследовательский

институт промышленных зданий Институт бетона

и сооружений (ЦНИИпромзданий) и железобетона (НИИЖБ)

Госстроя СССР Госстроя СССР

ПОСОБИЕ

по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов

СНиП 2.03.01-84)

ЧАСТЬ 1

Утверждено приказом ЦНИИпромзданий Госстроя СССР

от 30 ноября 1984 г. № 106а

Москва · Центральный институт типового проектирования · 1988

Рекомендовано к изданию решением секции несущих конструкций научно-технического совета ЦНИИпромзданий Госстроя СССР.

Пособие состоит из двух частей, издаваемых отдельными книгами.

Часть 1. Разд. 1. Общие указания.

Разд. 2. Материалы для железобетонных конструкций.

Разд. 3. Расчет элементов железобетонных конструкций по предельным состояниям первой группы.

Часть II. Разд. 4. Расчет элементов железобетонных конструкций по предельным состояниям второй группы.

Разд. 5. Конструктивные требования.

Содержит требования СНиП 2.03.01-84, относящиеся к проектированию указанных конструкций, положения, детализирующие эти требования, приближенные способы расчета, дополнительные указания, необходимые для проектирования, а также примеры расчета.

Для инженерно-технических работников проектных организаций, а также студентов строительных вузов.

При пользовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники», «Сборнике изменений к строительным нормам и правилам» Госстроя СССР и информационном указателе «Государственные стандарты СССР» Госстандарта.

ПРЕДИСЛОВИЕ

Настоящее Пособие (ч. I и II) содержит положения по проектированию предварительно напряженных железобетонных конструкций промышленных, гражданских и сельскохозяйственных зданий и сооружений, выполняемых из тяжелых и легких бетонов.

В Пособии приведены требования СНиП 2.03.01-84, относящиеся к проектированию указанных конструкций, положения, детализирующие эти требования, приближенные способы расчета, а также дополнительные указания, необходимые для проектирования. Соответствующие номера пунктов и таблиц СНиП 2.03.01-84 указаны в скобках.

Каждый раздел Пособия сопровождается примерами расчета элементов наиболее типичных случаев, встречающихся в практике проектирования. Кроме того, в прил. 1 приведен комплексный пример расчета предварительно напряженной конструкции.

Пособие может быть использовано при проектировании как предварительно напряженных конструкций, так и конструкций без предварительного напряжения. Однако ряд положений по расчету и конструированию, касающихся элементов или их частей, как правило выполняемых без предварительного напряжения, в Пособии не приведен (расчет и конструирование коротких консолей, подрезок, закладных деталей, воспринимающих внешнюю нагрузку, расчеты на продавливание и отрыв и т. п.). Эти материалы приведены в «Пособии по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов, выполняемых без предварительного напряжения арматуры» (М., ЦИТП Госстроя СССР, 1986).

В Пособии не приведены особенности проектирования статически неопределимых и сборно-монолитных конструкций, а также некоторых специальных сооружений (труб, силосов и др.), и в частности не рассмотрены вопросы, связанные с определением усилий в этих конструкциях. Эти вопросы освещаются в специальных пособиях и рекомендациях.

Все единицы физических величин в Пособии соответствуют «Перечню единиц физических величин, подлежащих применению в строительстве». При этом силы выражаются в ньютонах (Н) или в килоньютонах (кН); моменты сил — в кН•м или Н•мм; линейные размеры — в мм (в основном для сечений элементов) или в м (для длин элементов или их участков); напряжения, сопротивления, модули упругости — в мегапаскалях (МПа); распределенные нагрузки и усилия — в кН/м или Н/мм. Поскольку МПа = Н/мм2, при использовании в примерах расчета формул, включающих в себя величины в МПа (напряжения, сопротивления и т. п.), остальные величины приводятся только в Н и мм (мм2).

В таблицах нормативные и расчетные сопротивления и модули упругости материалов приведены в МПа и в кгс/см2.

В Пособии использованы буквенные обозначения и индексы к ним в соответствии с СТ СЭВ 1565-79 (см. прил. 3).

Разработано ЦНИИпромзданий Госстроя СССР (Б.Ф.Васильев, И.К.Никитин, А.Г.Королькова, канд. техн. наук Л.Л.Лемыш) и НИИЖБ Госстроя СССР (доктора техн. наук [А.А.Гвоздев], Ю.П.Гуща, А.С.Залесов, Г.И.Бердичевский, проф. Ю.В.Чиненков, кандидаты техн. наук Р.Л.Серых, Е.А.Чистяков, Л.К.Руллэ, [А.В.Яшин], Т.И.Мамедов, С.А.Мадатян, Н.А.Маркаров, Н.М.Мулин, Н.А.Корнев, Т.А.Кузьмич) с участием НИЛ ФХММ и ТП Главмоспромстройматериалов (д-р техн. наук С.Ю.Цейтлин, Е.З.Ерманок), КГБ Мосоргстройматериалов (канд. техн. наук В.С.Щукин).

1. ОБЩИЕ УКАЗАНИЯ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие распространяется на проектирование предварительно напряженных железобетонных конструкций из тяжелых, мелкозернистых и легких бетонов, предназначенных для работы в условиях неагрессивной среды при систематическом воздействии температур не выше 50 °С и не ниже минус 70 оС.

П р и м е ч а н и я: 1. Настоящее Пособие не распространяется на проектирование железобетонных конструкций гидротехнических сооружений, мостов, транспортных тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов, а также самонапряженных конструкций.

2. Определение терминов «бетоны тяжелые», «бетоны мелкозернистые» и «бетоны легкие» см. ГОСТ 25192-82. В настоящем Пособии термин «легкие бетоны» включает в себя только бетоны плотной структуры.

1.2. Предварительное напряжение железобетонных конструкций применяется в целях:

снижения расхода стали путем использования арматуры высокой прочности;

увеличения сопротивления конструкций образованию трещин в бетоне и ограничения их раскрытия;

повышения жесткости и уменьшения деформаций конструкций;

обжатия стыков элементов сборных конструкций;

повышения выносливости конструкций, работающих под воздействием многократно повторяющейся нагрузки;

уменьшения расхода бетона и снижения веса конструкций за счет применения бетона высоких классов.

1.3. Предварительное напряжение создается двумя основными способами:

натяжением арматуры на упоры формы или стенда;

натяжением арматуры на затвердевший бетон.

Натяжение арматуры на упоры производится механическим, электротермическим или электротермомеханическим способом, а натяжение арматуры на бетон, — как правило, механическим способом.

При натяжении на упоры применяются стержневая арматура, высокопрочная проволока в виде пакетов и арматурные канаты. При натяжении на бетон применяются высокопрочная проволока в виде пучков и арматурные канаты. Кроме того, проволока и арматурные канаты небольших диаметров могут натягиваться на упоры форм или бетон путем непрерывной намотки.

1.4 (1.4). Элементы сборных конструкций должны отвечать условиям механизированного изготовления на специализированных предприятиях.

Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузоподъемность монтажных механизмов, условия изготовления и транспортирования.

1.5 (1.8). Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 2.01.01-82. Расчетные технологические температуры устанавливаются заданием на проектирование.

Влажность воздуха окружающей среды определяется как средняя относительная влажность наружного воздуха наиболее жаркого месяца в зависимости от района строительства согласно СНиП 2.01.01-82 или как относительная влажность внутреннего воздуха помещений отапливаемых зданий.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.6 (1.10). Предварительно напряженные железобетонные конструкции должны удовлетворять требованиям расчета по несущей способности (предельные состояния первой группы) и по пригодности к нормальной эксплуатации (предельные состояния второй группы).

а) Расчет по предельным состояниям первой группы должен обеспечивать конструкции от:

хрупкого, вязкого или иного характера разрушения (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением) ;

усталостного разрушения (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки — подвижной или пульсирующей: подкрановых балок, шпал, перекрытий под некоторые неуравновешенные машины и т.п.);

потери устойчивости формы конструкции или ее положения;

разрушения под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, попеременного замораживания и оттаивания, пожара и т. п.).

б) Расчет по предельным состояниям второй группы должен обеспечивать конструкции от:

образования трещин, а также их чрезмерного или продолжительного раскрытия (если по условиям эксплуатации образование или продолжительное раскрытие трещин недопустимо);

чрезмерных перемещений (прогибов, углов перекоса и поворота, колебаний).

П р и м е ч а н и е. Расчет на устойчивость формы или положения конструкции, а также расчеты на совместное воздействие силовых факторов и неблагоприятных влияний внешней среды выполняются по соответствующим нормативным документам, пособиям или литературным источникам.

1.7 (1.11). Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов должен, как правило, производиться для всех стадий — изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.

1.8 (1.12). Значения нагрузок и воздействий, коэффициентов надежности по нагрузке, коэффициентов сочетаний, а также подразделение нагрузок на постоянные и временные должны приниматься в соответствии с требованиями СНиП 2.01.07-85.

Значения нагрузок необходимо умножать на коэффициенты надежности по назначению, принимаемые согласно «Правилам учета степени ответственности здании и сооружений при проектировании конструкций»1, утвержденным Госстроем СССР.

1 См. Бюллетень строительной техники, 1981, №7.

Нагрузки, учитываемые при расчете по предельным состояниям второй группы (эксплуатационные), следует принимать согласно указаниям пп. 1.10 и 1.14. При этом к длительным нагрузкам относится также часть полного значения кратковременных нагрузок, оговоренных в СНиП 2.01.07-85, а вводимую в расчет кратковременную нагрузку следует принимать уменьшенной на величину, учтенную в длительной нагрузке (например, если снеговая нагрузка для III района составляет s = 1000 Н/м2, то снеговая длительная нагрузка будет равна sl = 0,3 • 1000 = 300 Н/м2, а снеговая кратковременная нагрузка - ssh = 1000 — 300 = 700 Н/м2). Коэффициенты сочетаний относятся к полному значению кратковременных нагрузок.

1.9 (1.13). При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элемента следует вводить в расчет с коэффициентом динамичности, равным:

при транспортировании — 1,60;

при подъеме и монтаже — 1,40.

В этом случае учитывается также коэффициент надежности по нагрузке.

1.10 (1.16). К трещиностойкости конструкций (или их частей) предъявляются требования соответствующих категорий в зависимости от условий, в которых они работают, и от вида применяемой арматуры:

а) 1-я категория — образование трещин не допускается;

б) 2-я категория — допускается ограниченное по ширине непродолжительное раскрытие трещин acrc1 при условии обеспечения их последующего надежного закрытия (зажатия);

в) 3-я категория — допускается ограниченное по ширине непродолжительное acrc1 и продолжительное аcrc2 раскрытие трещин.

Под непродолжительным раскрытием трещин понимается их раскрытие при совместном действии постоянных, длительных и кратковременных нагрузок, а под продолжительным — только постоянных и длительных нагрузок.

Категории требований к трещиностойкости железобетонных конструкций, а также значения предельно допустимой ширины раскрытия трещин в условиях неагрессивной среды приведены: для ограничения проницаемости конструкций — в табл. 1а, для обеспечения сохранности арматуры — в табл. 1б.

Таблица 1а (1)



Условия работы конструкций

Категорий требований к трещиностойкости железобетонных конструкций и предельно допустимая ширина раскрытия трещин acrc1 и acrc2, мм, обеспечивающие ограничение
проницаемости конструкций

1. Элементы, воспринимающие давление жидкостей и газов при сечении:


полностью растянутом

1-я категория

частично сжатом

3-я категория
acrc1 = 0,3
acrc2 = 0,2

2. Элементы, воспринимающие давление сыпучих тел

3-я категория
acrc1 = 0,3
acrc2 = 0,2

Таблица 1б (2)




Условия

Категория требований к трещиностойкости железобетонных конструкций и предельно допустимая ширина раскрытия трещин аcrc1 и acrc2, мм, обеспечивающие сохранность арматуры

эксплуатации конструкций


стержневой классов А-I, A-II, A-III, A-IIIв,
A-IV; проволочной классов
В-I и Bp-I

стержневой классов A-V и
A-VI; проволочной классов B-II,
Bp-II, К-7 и К-19 при диаметре проволоки
3,5 мм и более


проволочной классов
B-II, Bp-II и К-7 при диаметре проволоки
3 мм и менее

1. В закрытом помещении

3-я категория;
acrc1 = 0,4 ;
acrc2 = 0,3

3-я категория;
acrc1 = 0,3 ;
acrc2 = 0,2

3-я категория;
acrc1 = 0,2 ;
acrc2 = 0,1

2. На открытом воздухе, а также в грунте выше или ниже уровня грунтовых вод

3-я категория;
acrc1 = 0,4 ;
acrc2 = 0,3

3-я категория;
acrc1 = 0,2 ;
acrc2 = 0,1

2-я категория;
acrc1 = 0,2

3. В грунте при переменном уровне грунтовых вод

3-я категория;
acrc1 = 0,3 ;
acrc2 = 0,2

2-я категория;
acrc1 = 0,2

2-я категория;
acrc1 = 0,1

П р и м е ч а н и я: 1. Для конструкций, рассчитываемых на выносливость, предельно допустимая ширина раскрытия трещин принимается равной соответствующим значениям ширины продолжительного раскрытия трещин acrc2.

2. При использовании канатов класса К-7 диаметр проволоки принимается равным одной трети диаметра каната.

3. В обозначениях классов арматуры А-III, A-IV, A-V и A-VI подразумеваются также все разновидности термически и термомеханически упрочненной арматуры соответствующего класса (см. п. 2.15).

Эксплуатационные нагрузки, учитываемые при расчете железобетонных конструкций по образованию трещин, их раскрытию или закрытию, должны приниматься согласно табл. 2.

Таблица 2 (3)

Катего­рия тре­бова­ний к тре-

Нагрузки, коэффициенты надежности по нагрузке gf
и коэффициенты точности натяжения
gsp,
принимаемые при расчете

щино­стой­кости же-


по образованию

по раскрытию
трещин


по закрытию

лезобетон­ных конст­рук­ций

трещин

непро-должи­тельному

продол­житель­ному

трещин

1

Постоянные, длительные и кратковременные при gf > 1,0* и gsp < 1,0**

-

-

-

2

Постоянные, длительные и кратковременные; gf > 1,0* и gsp < 1,0** - когда расчет производится для выяснения необходимости проверки по непродолжитель­ному раскрытию трещин и по их закрытию; gf = 1,0 и gsp = 1,0 - когда расчет производится для выяснения случая расчета по деформациям

Постоян­ные, длительные и кратковре­менные при gf = 1,0 и gsp = 1,0

-

Постоянные и длительные при gf = 1,0 и gsp < 1,0 - когда проверяется условие (218); постоянные, длительные и кратковременные при gf = 1,0 и gsp = 1,0 - когда проверяется условие (217)

3

Постоянные, длительные и кратковременные при gf = 1,0 и gsp = 1,0 - когда расчет производится для выяснения необходимости проверки по раскрытию трещин и для выяснения случая расчета по деформациям

То же

Постоян­ные и длитель­ные при gf = 1,0 и gsp = 1,0

Постоянные и длительные при gf = 1,0 и gsp = 1,0 - когда выясняется случай расчета по деформациям

* Коэффициент надежности по нагрузке gf принимается как и при расчете по прочности.

** При проверке зоны, растянутой от усилия обжатия, gsp > 1,0.

П р и м е ч а н и я: 1. Длительные и кратковременные нагрузки принимаются с учетом указаний п. 1.8.

2. Особые нагрузки учитываются в расчете по образованию трещин в тех случаях, когда наличие трещин приводит к катастрофическому положению (взрыву, пожару и т. п.).

3. Коэффициент точности натяжения gsp определяется согласно п. 1.18.

4. При действии многократно повторяющихся нагрузок принимаются те же коэффициенты надежности по нагрузке gf, что и при расчете на выносливость, согласно СНиП 2.01.07-85 (т.е. для всех элементов, кроме подкрановых балок, gf = 1,0).

5. Для участков в пределах длины зоны передачи напряжений (см. п. 2.26) всегда принимается gsp < 1,0 независимо от категории требований к трещиностойкости.

Если в конструкциях или их частях, к трещиностойкости которых предъявляются требования 2-й и 3-й категорий, трещины не образуются при соответствующих нагрузках, указанных в табл. 2, их расчет по непродолжительному раскрытию и закрытию трещин (для 2-й категории) или по непродолжительному и продолжительному раскрытию трещин (для 3-й категории) не производится.

Указанные категории требований к трещиностойкости железобетонных конструкций относятся к трещинам, нормальным и наклонным к продольной оси элемента.

Категория требований к трещиностойкости различных зон элемента устанавливается, если рассматриваются:

а) нормальные трещины — по виду и классу продольной арматуры рассматриваемой зоны;

б) наклонные трещины - по виду и классу поперечной и отогнутой арматуры, а также по виду и классу продольной арматуры в случаях, когда в местах ее расположения по высоте сечения возможно образование наклонных трещин (см. п. 4.9).

Во избежание раскрытия продольных трещин следует принимать конструктивные меры (устанавливать соответствующую поперечную арматуру) и, кроме того, ограничивать значения сжимающих напряжении в бетоне в стадии предварительного обжатия (см. п. 1.22).

П р и м е ч а н и е. К предварительно напряженным конструкциям без сцепления арматуры с бетоном должны предъявляться требования 1-й категории.

1.11 (1.17). На концевых участках предварительно напряженных элементов с арматурой без анкеров в пределах длины зоны передачи напряжений (см. п. 2.26) не допускается образование трещин при действии постоянных, длительных и кратковременных нагрузок, вводимых в расчет с коэффициентом gf = 1,0.

Указанное требование допускается не учитывать для части сечения, расположенной по его высоте от уровня центра тяжести приведенного сечения до растянутой от действия усилия предварительного обжатия грани, если в этой части отсутствует напрягаемая арматура без анкеров.

1.12 (1.18). В случае, если в сжатой при эксплуатационных нагрузках зоне предварительно напряженных элементов, согласно расчету в стадии изготовления, транспортирования и возведения, образуются трещины, нормальные к продольной оси, следует учитывать снижение трещиностойкости растянутой при эксплуатации зоны элементов, а также увеличение их кривизны. Для элементов, рассчитываемых на воздействие многократно повторяющейся нагрузки, образование таких трещин не допускается.

1.13 (1.19). Для железобетонных слабоармированных элементов, характеризуемых тем, что их несущая способность исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15 %.

Такое увеличение армирования следует производить при выполнении условий:

Mcrc ³ Mu ; x < xR , (1)

где Мcrc — момент трещинообразования, определяемый согласно п. 4.2 с заменой Rbt,ser на 1,2 Rbt,ser и при gsp = 1,0;

Мu — момент, соответствующий исчерпанию несущей способности, определяемой согласно пп.3.1—3.18, 3.35—3.53; для внецентренно сжатых и растянутых элементов значения Мu определяются относительно оси, проходящей через ядровую точку, наиболее удаленную от растянутой зоны (см. п. 4.2);

x, xR — соответственно относительная высота сжатой зоны и ее граничное значение, определяемые при расчете по прочности.

1.14 (1.20). Прогибы элементов железобетонных конструкций не должны превышать предельно допустимых значений, устанавливаемых с учетом следующих требований:

а) технологических (условия нормальной работы кранов, технологических установок, машин и т.п.);

б) конструктивных (влияние соседних элементов, ограничивающих деформации, необходимость выдерживания заданных уклонов и т. п.);

в) эстетических (впечатление людей о пригодности конструкции).

Значения предельно допустимых прогибов приведены в табл. 3.

Таблица 3 (4)

Элементы конструкций

Предельно допустимые прогибы

1. Подкрановые балки при кранах:


ручных

l/500

электрических

l/600

2. Перекрытия с плоским потолком и элементы покрытия (кроме указанных в поз. 4) при пролетах, м:


l < 6

l/200

6 £ l £ 7,5

3 см

l > 7,5

l/250

3. Перекрытия с ребристым потолком и элементы лестниц при пролетах, м:


l < 5

l/200

5 £ l £ 10

2,5 см

l > 10

l/400

4. Элементы покрытий сельскохозяйственных зданий производственного назначения при пролетах, м:


l < 6

l/150

6 £ l £ 10

4 см

l > 10

l/250

5. Навесные стеновые панели (при расчете из плоскости) при пролетах, м:


l < 6

l/200

6 £ l £ 7,5

3 см

l > 7,5

l/250

Обозначение, принятое в табл. 3: l — пролет балок или плит; для консолей принимается значение l, равное удвоенному вылету консоли.

П р и м е ч а н и е. Предельно допустимые прогибы по поз. 1 и 5 обусловлены технологическими и конструктивными, а по поз. 2-4 - эстетическими требованиями.

Расчет по деформациям должен производиться при ограничении требований: технологических или конструктивных — на действие постоянных, длительных и кратковременных нагрузок; эстетических — на действие постоянных и длительных нагрузок. При этом принимается gf = 1,0.

При действии постоянных, длительных и кратковременных нагрузок прогиб балок или плит во всех случаях не должен превышать 1/150 пролета и 1/75 вылета консоли.

Значения предельно допустимых прогибов могут быть увеличены на высоту строительного подъема, если это не ограничивается технологическими или конструктивными требованиями.

Для не связанных с соседними элементами железобетонных плит перекрытий, лестничных маршей, площадок и т.п. должна производиться дополнительная проверка по зыбкости: добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 1000 Н при наиболее невыгодной схеме ее приложения должен быть не более 0,7 мм.

Если в нижележащем помещении с плоским потолком имеются расположенные поперек пролета элемента l постоянные перегородки, не являющиеся опорами, с расстояниями между ними lp , то прогиб элемента в пределах расстояния lр (отсчитываемый от линии, соединяющей верхние точки осей перегородок) может быть допущен до lp , однако при этом предельный прогиб всего элемента должен быть не более l.

ПРЕДВАРИТЕЛЬНЫЕ НАПРЯЖЕНИЯ В ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ

1.15 (1.23). Предварительные напряжения ssp (sp) в напрягаемой арматуре без учета потерь следует назначать таким образом, чтобы выполнялись условия при способах натяжения:

механическом

0,32 Rs,ser £ ssp £ 0,95 Rs,ser ; (2)

электротермическом и электротермомеханическом

0,3 Rs,ser + p £ ssp £ 0,95 Rs,ser - p ; (3)

где p - допустимое отклонение значения предварительного напряжения, МПа, равное:

, (4)

здесь l - длина натягиваемого стержня (расстояние между наружными гранями упоров), м. При автоматизированном натяжении1 значение числителя 360 во втором члене формулы (4) заменяется на 90.

1 См. «Рекомендации по технологии автоматизированной заготовки и натяжения высокопрочной стержневой арматуры многопустотных настилов». - М., НИИЖБ, 1984.

Кроме того, при электротермическом способе натяжения значения ssp (sp) следует назначать с учетом допустимых температур нагрева согласно «Руководству по технологии изготовления предварительно напряженных железобетонных конструкций» (М., Стройиздат, 1975); в случае отсутствия данных о технологии изготовления конструкций значение ssp принимается не более: для горячекатаных сталей - 700 МПа, для термически упрочненных сталей - 550 МПа.

При наличии перегибов проволочной арматуры напряжения ssp не должны превышать 0,85 Rs,ser.

1.16 (1.25). При расчете предварительно напряженных элементов следует учитывать потери предварительного напряжения арматуры.

При натяжении арматуры на упоры следует учитывать потери:

а) первые - от деформации анкеров, трения арматуры об огибающие приспособления, от релаксации напряжений в арматуре, температурного перепада, деформации форм (при натяжении арматуры на формы), от быстронатекающей ползучести бетона;

б) вторые - от усадки и ползучести бетона.

При натяжении арматуры на бетон следует учитывать потери:

а) первые - от деформации анкеров, трения арматуры о стенки каналов или поверхность бетона конструкции;

б) вторые - от релаксации напряжений в арматуре, усадки и ползучести бетона, смятия бетона под витками арматуры, деформации стыков между блоками (для конструкций, состоящих из блоков).

Потери предварительного напряжения арматуры следует определять по табл. 4, при этом суммарную величину потерь при проектировании конструкций необходимо принимать не менее 100 МПа.

Таблица 4 (5)

Факторы, вызывающие потери пред-

Значения потерь предварительного напряжения, МПа, при натяжении арматуры

варительного напряжения арматуры


на упоры


на бетон

А. Первые потери

1. Релаксация напряже­ний арматуры s1:



при механическом способе натяжения арматуры:



а) проволочной


б) стержневой

0,1 ssp - 20


при электротермическом и электротермомеха­ническом способах
натяжения арматуры:



в) проволочной

0,05 ssp


г) стержневой

Здесь ssp принимается без учета потерь, МПа.

Для арматуры классов A-III и A-IIIв потери от релаксации равны нулю. Если вычисленные значения потерь окажутся отрицательными, их следует принимать равными нулю.


2. Температурный перепад (разность температур натянутой арматуры в зоне нагрева и устройства, восприни­ма­ющего усилие натяжения при прогреве бетона) s2

Для бетонов классов В15-В40

1,25 Dt ;

для бетонов класса В45 и выше

1,0 Dt ,

где Dt - разность между температурой нагреваемой арматуры и неподвижных упоров (вне зоны нагрева), воспринимающих усилие натяжения, оС. При отсутствии точных данных принимается Dt = 65 оС.

При подтягивании напрягаемой арматуры в процессе термообработки на величину, компенсирующую потери от температурного перепада, последние принимаются равными нулю.

-

3. Деформации анкеров, расположенных у натяжных устройств, s3

,

где Dl - обжатие опрессованных шайб, смятие высаженных головок и т.п., принимаемое равным
2 мм; смещение стержней в инвентарных зажимах, определяемое по формуле

Dl = 1,25 + 0,15d ;

d - диаметр стержня, мм; деформация анкеров в виде гаек, равная Dl = 1 мм;

l - длина натягиваемого стержня (расстояние между наружными гранями упоров формы или стенда), мм.

При электротермическом способе натяжение потери от деформаций анкеров в расчете не учитываются, так как они учтены при определении значения полного удлинения арматуры

,

где Dl1 - обжатие шайб или прокладок, расположенных между анкерами и бетоном элемента, принимаемое равным 1 мм;

Dl2 - деформация анкеров стаканного типа, колодок с пробками, анкерных гаек и захватов, принимаемая равной 1 мм;

l - длина натягиваемого стержня (элемента), мм


Значения Dl, Dl1, Dl2 допускается определять в соответствии с «Руководством по технологии изготовления предварительно напряженных железобетонных конструкций» или другими материалами либо назначать по данным испытаний конкретных анкеров

4. Трение арматуры о стенки каналов, о поверх­ность бетона конструкции или об огибающие приспособле­ния при натяжении на упоры) s4

,

где ssp - принимается без учета потерь;

е - основание натуральных логарифмов;

w, d - коэффициенты, определяемые по табл. 5;

c - длина участка арматуры от натяжного устройства до расчетного сечения, м; для линейных элементов допускается принимать величину c равной проекции указанного участка арматуры на продольную ось элемента;

q - угол поворота арматуры на участке между расчетным сечением и натяжным устройством, рад (черт. 1); при нескольких перегибах арматуры q - сумма этих углов. Значения можно определять по табл. 6 в зависимости от wc + dq

5. Деформация стальной формы при изготовлении предвари­тельно напряженных железобетонных конструк­ций с неод­новремен­ным натяжением арматуры на форму s5

,

где h - коэффициент, определяемый по формулам:

при натяжении арматуры домкратом

;

при натяжении арматуры намоточной машиной элетротермомеханиче­ским способом (50 % усилия создается грузом)

,

где n - число стержней (групп стержней), натягиваемых неодновременно;

Dl - сближение упоров по линии действия усилия Р, определяемое из расчета деформаций формы;

l - расстояние между наружными гранями упоров.

При отсутствии данных о технологии изготовления и конструкции формы потери от деформации форм принимаются равными 30 МПа. При электротермическом способе натяжения потери от деформации формы в расчете не учитываются, так как они учтены при определении полного удлинения арматуры

-

6. Быстронатекающая ползучесть s6 для бетона:

при £ a;


-

а) подвергнутого тепловой обработке


при
> a,

где a, b - коэффициенты, принимаемые:

a = 0,25 + 0,025 Rbp , но не более 0,8;

b = 5,25 - 0,185 Rbp, но не более 2,5 и не менее 1,1;

Rbp - принимается в МПа;

sbp - определяются на уровне центров тяжести продольной арматуры S и S¢ с учетом потерь по поз. 1-5.

При растягивающих напряжениях sbp потери s6 принимаются равными нулю.

Для легкого бетона при передаточной прочности 11 МПа и ниже вместо множителя 34 принимается множитель 51


б) естественного твердения

Потери вычисляются по формулам поз. 6а с делением полученного результата ра коэффициент 0,85


Б. Вторые потери

7. Релаксация напряже­ний арматуры s7:



а) проволочной

-

б) стержневой

-

0,1 ssp - 20
(
см. пояснения к поз. 1)

8. Усадка бетона s8

Бетон естественного твердения

Бетон, подвергнутый тепловой обработке при атмосферном давлении

Независимо от условий твердения бетона

тяжелого классов:




а) В35 и ниже

40

35

30

б) В40

50

40

35

в) В45 и выше

60

50

40

мелкозерни­стого групп:




г) А (см. п. 2.1)

Потери определяются по поз. 8а,б с умножением на коэффициент 1,3

40

д) Б

Потери определяются по поз. 8а с умножением на коэффициент 1,5

50

е) В

Потери определяются по поз. 8а,б,в как для тяжелого бетона естественного твердения

40

легкого при мелком заполнителе:




ж) плотном

50

45

40

з) пористом

70

60

50

9. Ползучесть бетона s9 (см. п. 1.17):


а) тяжелого и легкого при плотном мелком заполнителе

при £ 0,75 ;

при > 0,75 ,

где sbp - то же, что в поз. 6, но с учетом первых потерь; допускается не учитывать потери по поз. 6;

a - коэффициент, принимаемый равным для бетона:

подвергнутого тепловой обработке при атмосферном давлении - 1,00;

естественного твердения - 1,17.

При растягивающих напряжениях sbp потери s9 принимаются равными нулю

б) мелкозернистого групп:


А

Потери вычисляются по формулам поз. 9а с умножением полученного результата на коэффициент 1,3

Б

Потери вычисляются по формулам поз. 9а с умножением полученного результата на коэффициент 1,5

В

Потери вычисляются по формулам поз. 9а при a = 1,00

в) легкого при пористом мелком заполни­теле

Потери вычисляются по формулам поз. 9а с умножением полученного результата на коэффициент 1,2

10. Смятие бетона под витками спиральной или кольцевой арматуры (при диаметре конструкции до 3 м) s10

-

70 - 0,22 dext ,

где dext - наружный диаметр конструкции, см

11. Деформация обжатия стыков между блоками (для конструк­ций, состоящих из блоков) s11

-

,

где n - число швов конструкции и оснастки по длине натягиваемой арматуры;

Dl - обжатие стыка, принимаемое равным: для стыков, заполненных бетоном, - 0,3 мм; при стыковании насухо - 0,5 мм;

l - длина натягиваемой арматуры, мм

П р и м е ч а н и е. Потери предварительного напряжения в напрягаемой арматуре S' определяются так же, как и в арматуре S.

Черт. 1. Схема изменения напряжений в арматуре при наличии трения арматуры о стенки каналов, о поверхность бетона или об огибающие приспособления

1 - натяжное устройство; 2 - анкер; s4 - потери напряжении от трения

Таблица 5(6)



Условия натяжения

Коэффициенты для определения потерь от трения арматуры (см. поз. 4 табл. 4)



d при арматуре в виде


w


пучков, канатов

стержней периодиче­ского профиля

1. Натяжение на упоры

0

0,25

0,25

2. Натяжение на бетон при расположении арматуры в канале:




а) с металлической поверхностью

0,0030

0,35

0,4

б) с бетонной поверхностью, образованном жестким каналообразователем, или у бетонной поверхности

0

0,55

0,65

в) с бетонной поверхностью, образованном гибким каналообразователем

0,0015

0,55

0,65

Таблица 6

wc + dq

wc + dq

0,00

0,000

0,55

0,423

0,05

0,049

0,60

0,451

0,10

0,095

0,65

0,478

0,15

0,139

0,70

0,503

0,20

0,181

0,75

0,528

0,25

0,221

0,80

0,551

0,30

0,259

0,85

0,573

0,35

0,295

0,90

0,593

0,40

0,330

0,95

0,613

0,45

0,362

1,00

0,632

0,50

0,393

1,05

0,650

1.17 (1.26). При определении потерь предварительного напряжения от усадки и ползучести бетона по поз. 8 и 9 табл. 4 необходимо учитывать следующее:

а) при заранее известном сроке загружения конструкции потери следует умножать на коэффициент jl, определяемый по формуле

, (5)

где t — время, сут, отсчитываемое при определении потерь от ползучести - со дня обжатия бетона и от усадки - со дня окончания бетонирования.

При проектировании стропильных балок и ферм, ригелей перекрытий массового заводского изготовления допускается потери от усадки и ползучести умножать на коэффициент jl при t = 65 сут;

б) для конструкций, предназначенных для эксплуатации при влажности воздуха ниже 40 %, потери должны быть увеличены на 25 %, за исключением конструкций из тяжелого и мелкозернистого бетонов, предназначенных для эксплуатации в климатическом подрайоне IVA согласно СНиП 2.01.01-82 и не защищенных от солнечной радиации, для которых указанные потери увеличиваются на 50 %.

1.18 (1.27). Значение предварительного напряжения в арматуре вводится с коэффициентом точности натяжения арматуры gsp, определяемым по формуле

gsp = 1 ± Dgsp . (6)

Знак «плюс» принимается при неблагоприятном влиянии предварительного напряжения (т.е. на данной стадии работы конструкции или на рассматриваемом участке элемента предварительное напряжение снижает несущую способность, способствует образованию трещин и т.п.), знак «минус» - при благоприятном.

Значения Dgsp при механическом способе натяжения арматуры принимаются равными 0,1, а при электротермическом и электротермомеханическом способах натяжения определяются по формуле

Dgsp = , (7)

но принимаются не менее 0,1,

где р, ssp - см. п. 1.15;

np - число стержней напрягаемой арматуры в сечении элемента.

При определении потерь предварительного напряжения арматуры, а также при расчете по раскрытию трещин и по деформациям значение Dgsp допускается принимать равным нулю. При расчете по образованию и закрытию трещин значения gsp определяются с учетом указаний табл. 2.

1.19 (1.28). Усилие предварительного обжатия Р и эксцентриситет его приложения e относительно центра тяжести приведенного сечения (черт. 2) определяются по формулам:

P = ssp Asp + sp A¢sp - ss As - s A¢s ; (8)

e = , (9)

где ss, s - напряжения в ненапрягаемой арматуре соответственно S и S¢, вызванные усадкой и ползучестью бетона;

уsp, у¢sp, ys, y¢s - расстояния от центра тяжести приведенного сечения до точек приложения равнодействующих усилий соответственно в напрягаемой и ненапрягаемой арматуре S и S¢ (см. черт. 2).

Черт. 2. Схема усилий предварительного напряжения арматуры
в поперечном сечении железобетонного элемента

При криволинейной напрягаемой арматуре значения ssp и sp умножают соответственно на cos q и cos , где q и q' - углы наклона оси арматуры к продольной оси элемента (для рассматриваемого сечения).

Напряжения ssp и sp следует принимать:

а) в стадии изготовления (с учетом подъема и складирования) — с учетом первых потерь;

б) в стадии эксплуатации (включая стадии транспортирования и возведения) - с учетом первых и вторых потерь.

Напряжения ss и s следует принимать численно равными:

в стадии изготовления — потерям напряжений от быстронатекающей ползучести по поз. 6 табл. 4;

в стадии эксплуатации — сумме потерь напряжений от усадки и ползучести бетона по поз. 6, 8 и 9 табл. 4.

Для ненапрягаемой арматуры S¢, расположенной при обжатии в растянутой зоне, напряжение s принимается равным нулю.

1.20. Для элементов с напрягаемой арматурой без анкеров на длине зоны передачи напряжений lp значения (ssp) (sp) снижаются путем умножения их на отношение lx / lp, где lx - расстояние от начала зоны передачи напряжения до рассматриваемого сечения.

Значение lр при этом определяют согласно указаниям п. 2.26 с заменой stp на напряжение ssp, определенное с учетом потерь по поз. 1-5 табл. 4.

Если площадь сечения всей ненапрягаемой арматуры составляет менее 15 % площади всей напрягаемой арматуры, усилие Р для сечений на длине lр допускается снижать путем непосредственного умножения его на lx / lp.

1.21 (1.28). Напряжения в бетоне sb (sbp) в сечениях, нормальных к продольной оси элемента, определяются по правилам расчета упругих материалов по приведенному сечению. При этом усилие предварительного обжатия Р рассматривается как внешняя сила. Для изгибаемых элементов значение sb (sbp) определяется по формуле

, (10)

где у — расстояние от центра тяжести приведенного сечения до рассматриваемого волокна;

М — изгибающий момент в рассматриваемой стадии работы элемента.

В формуле (10) сжимающие напряжения учитываются со знаком «плюс», а растягивающие - со знаком «минус».

Приведенное сечение включает в себя сечение бетона с учетом ослабления его каналами, пазами и т.п., а также сечение всей продольной (напрягаемой и ненапрягаемой) арматуры, умноженное на отношение a модулей упругости, арматуры и бетона. Если части бетонного сечения выполнены из бетонов разных классов или видов, их приводят к одному классу или виду, исходя из отношения модулей упругости бетона.

Геометрические характеристики приведенного сечения при бетоне одного вида и класса определяют по формулам:

площадь приведенного сечения

Ared = A + a Asp + a A¢sp + a As + a A¢s ; (11)

расстояние от центра тяжести приведенного сечения до растянутого волокна

, (12)

где S — статический момент сечения бетона относительно растянутой грани;

момент инерции приведенного сечения относительно его центра тяжести

Ired = I + a Asp y2sp + a A¢sp y¢2sp + a As y2s + a A¢s y¢2s . (13)

Обозначения к формулам (12) и (13) — см. черт. 2.

Допускается не уменьшать площадь сечения бетона А, если общая площадь сечения арматуры оставляет не более 0,03 А.

1.22 (1.29). Сжимающие напряжения в бетоне в стадии предварительного обжатия sbp не должны превышать значений (в долях от передаточной прочности бетона Rbp), указанных в табл. 7.

Таблица 7 (7)




Напряженное




Способ

Сжимающие напряжения в бетоне
в стадии предварительного обжатия,
в долях от передаточной прочности бетона
sbp / Rbp , не более

состояние сечения

натяже­ния

при расчетной зимней температуре
наружного воздуха, оС


арма-

минус 40 и выше

ниже минус 40


туры

при обжатии



централь­ном

внецент­ренном

централь­ном

внецент­ренном

1. Напряжения уменьшаются или не изменяются при действии внешних нагрузок

На упоры

На бетон

0,85

0,70

0,95*

0,85

0,70

0,60

0,85

0,70

2. Напряжения увеличиваются при действии внешних нагрузок

На упоры

На бетон

0,65

0,60

0,70

0,65

0,50

0,45

0,60

0,50

* Для элементов, изготовляемых с постепенной передачей усилий обжатия, при наличии стальных опорных деталей и дополнительной поперечной арматуры, охватывающей все продольные стержни (см. п. 5.46) при ³ 0,5% (где Asw1 и s - площадь сечения и шаг огибающего хомута), на длине не менее длины зоны передачи напряжений lp (см. п. 2.26) допускается принимать = 1,00.

П р и м е ч а н и я: 1. Значения sbp / Rbp, указанные в настоящей таблице, для бетона в водонасыщенном состоянии при расчетной температуре воздуха ниже минус 40 °С следует принимать на 0,05 меньше.

2. Расчетные зимние температуры наружного воздуха принимаются согласно указаниям п. 1.5.

3. Для легких бетонов классов В7,5 - В12,5 значения sbp / Rbp следует принимать не более 0,30.

Напряжения sbp определяются на уровне крайнего сжатого волокна бетона с учетом первых потерь предварительного напряжения и при коэффициенте точности натяжения арматуры gsp, равном единице.

1.23 (1.24). Значения напряжений scon1 и con1 в напрягаемой арматуре соответственно S и S¢, контролируемые по окончании натяжения на упоры, принимаются равными ssp и sp (см. п. 1.15) за вычетом потерь по поз. 3 и 4 табл. 4.

Значения напряжений в напрягаемой арматуре S и S¢, контролируемые в месте приложения натяжного усилия при натяжении арматуры на затвердевший бетон, принимаются равными соответственно scon2 и con2, определяемым из условия обеспечения в расчетном сечении напряжений ssp и sp по формулам:

scon2 = ssp - a sb ; (14)

con2 = sp - a b ; (15)

где ssp, sp — определяются без учета потерь предварительного напряжения;

sb, b — напряжения в бетоне на уровне арматуры S и S¢ (см. п. 1.21) от действия усилия обжатия Р, определенного с учетом первых потерь напряжений.

В конструкциях из легкого бетона классов В7,5—В12,5 значения scon1 и scon2 не должны превышать соответственно 550 и 400 МПа.

При применении в элементе нескольких пучков или канатов арматуры, натягиваемых на бетон неодновременно, контролируемые напряжения в каждом из них рекомендуется определять с учетом влияния упругого обжатия, вызванного усилиями пучков или канатов, натягиваемых позднее.

Контролируемые напряжения группы арматуры k определяются в этом случае по формуле

scon,k = scon,2 ± , (16)

где scon,2 — напряжение в арматуре группы k, определяемое по формуле (14);

sbki — среднее по длине арматуры рассматриваемой группы k напряжение в бетоне на уровне ее центра тяжести от упругого обжатия бетона усилием группы арматуры i, натягиваемой позднее;

t - число групп арматуры, натягиваемых позднее группы k.

В формуле (16) при сжимающем напряжении sbki принимают знак «плюс», а при растягивающем — «минус».

Среднее напряжение в бетоне sbki для элемента с переменным по длине поперечным сечением определяется по формуле

sbki = , (17)

где sbki(j) — напряжения в бетоне в среднем сечении j-го участка;

lj — длина j-го участка;

l - длина элемента в пределах рассматриваемого пучка (каната) .

При прямолинейных и параллельных к продольной оси элемента пучках (канатах) и постоянном поперечном сечении элемента значение Ssbki определяют по формуле (10), вычисляя P (и соответствующее значение e0) от всей арматуры, натягиваемой после рассматриваемой группы k.

Примеры расчета

Пример 1. Дано: плита покрытия размером 1,5´6 м; поперечное сечение — по черт. 3; бетон тяжелый класса В25 (Еb = 2,7×104 МПа); передаточная прочность бетона Rbp = 17,5 МПа; напрягаемая арматура класса A-IV (Rs,ser = 590 МПа, Es = 19×104 МПа) площадью сечения Аsp = 201 мм2 (l Æ 16), ненапрягаемая арматура сжатая и растянутая класса А-III (Еs = 2×104 МПа) площадью сечения Аs = А¢s = 50,3 мм2 (l Æ 8); натяжение арматуры производится на упоры формы электротермическим неавтоматизированным способом; технология изготовления плиты — агрегатно-поточная с применением пропаривания; масса плиты 1,3 т.

Требуется определить значение и точку приложения усилия предварительного обжатия P1 (с учетом первых потерь) и Р2 (с учетом всех потерь) для сечения в середине пролета, принимая максимально допустимое натяжение арматуры.

Черт. 3. К примеру расчета 1

Р а с ч е т. Ввиду симметрии сечения расчет ведем для половины сечения плиты. Определяем геометрические характеристики приведенного сечения согласно п. 1.21, принимая:

коэффициент a для всей арматуры.

;

A¢sp = 0.

Площадь приведенного сечения:

Ared = A + a Asp + a As + a A¢s = 730 × 30 +50 × 270 +60 × 270 × 0,5 +
+ 97,5 × 15 + 7,4 × 201+ 7,4 × 50,3 × 2 = 47 200 мм2.

Статический момент сечения бетона относительно нижней грани ребра

S = 730 × 30 × 285 + 50 × 2702 × 0,5 + 60 × 0,5 2702 + 97,52 × 15 × 0,5 =
= 9593 × 103 мм3.

Расстояние от центра тяжести приведенного сечения до нижней грани ребра:

= 206,7 мм;

ysp = y0 - ap = 206,7 - 35 = 171,7 мм ;

ys = y0 - as = 206,7 - 20 = 186,7 мм ;

y¢s = h - a¢s - y0 = 300 - 20 - 206,7 = 73,3 мм .

Момент инерции приведенного сечения:

Ired = I + aAspy2sp + aAsy2s + aA¢sy¢2s = + 730 × 30 (285 - 206,7)2+ ++ 50 × 270 (206,7-135)2 ++ 60 × 270 × 0,5 (206,7-180)2 + + 15× 97,5 (206,7 - 48,7)2 + 7,4 × 201 × 171,72 +
+ 7,4 × 50,3 × 186,72 + 7,4 × 50,3 × 73,32 = 3599 × 105 мм4.

Из условия (3) п. 1.15 определим максимально допустимое значение ssp без учета потерь. При длине натягиваемого стержня l = 6 м

90 МПа.

Тогда ssp = Rs,ser - p = 590 - 90 = 500 МПа.

Определим первые потери по поз. 1—6 табл. 4.

Потери от релаксации напряжений в арматуре при электротермическом способе натяжения стержневой арматуры равны:

s1 = 0,03 ssp = 0,03 × 500 = 15 МПа.

При агрегатно-поточной технологии форма с упорами при пропаривании нагревается вместе с изделием, поэтому температурный перепад между ними равен нулю и, следовательно, s2 = 0.

Потери от деформаций анкеров s3 и формы s5 при электротермическом натяжении равны нулю. Поскольку напрягаемая арматура не отгибается, потери от трения арматуры s4 также равны нулю.

Таким образом, усилие обжатия с учетом потерь по поз. 1-5 табл. 4 РI равно:

PI = Asp (ssp - s1) = 201 (500 - 15) = 97485 H,

а его эксцентриситет равен:

е0p = ysp = 171,7 мм.

Определим потери от быстронатекающей ползучести бетона согласно поз. 6 табл. 4. Для этого вычислим напряжения в бетоне sbp в середине пролета от действия силы PI и изгибающего момента Mw от веса плиты.

Нагрузка от веса плиты равна (см. п. 2.14):

= 1,083 кН/м.

Тогда Mw = кН×м

(l = 5,7м - расстояние между подкладками при хранении плиты).

Напряжение sbp на уровне арматуры S (т.е. при y = ysp = 171,7 мм) равно:


= 7,95 МПа.

Напряжение bp на уровне арматуры S' (т.е. при у = у's = 73,3 мм) равно:

bp = -0,45 МПа < 0 .

Потери от быстронатекающей ползучести равны:

на уровне арматуры S:

a = 0,25 + 0,025Rbp = 0,25 + 0,025 × 17,5 = 0,69 < 0,8 ;

поскольку = 0,45 < a = 0,69, то s6 = 34 =

= 34 × 0,45 = 15,3 МПа;

на уровне арматуры S': поскольку bp < 0, то s6 = 0.

Напряжение ssp1 с учетом первых потерь равно:

ssp1 = ssp - s1 - s6 = 500 - 15 - 15,3 = 470 МПа.

Напряжения ss и s принимаем равными потерям напряжений от быстронатекающей ползучести, т.е. ss = 15,3 МПа и s = 0.

Определим усилие обжатия с учетом первых потерь напряжений P1 и его эксцентриситет e0p1 по формулам (8) и (9):

P1 = ssp1 Asp - ss As = 470×201 - 15,3×50,3 = 93,7 × 103 Н;

e0p1 = = 171,6 мм.

В соответствии с п. 1.22 проверим максимальное сжимающее напряжение бетона sbp от действия силы Р1, вычисляя его по формуле (10) при у = у0 = 206,7 мм:

sbp = = 11,2 МПа

(момент от собственного веса не учитывается).

Поскольку = 0,64 < 0,95 (см. табл. 7), требование п. 1.22 выполняется.

Определим вторые потери напряжений по поз. 8 и 9 табл. 4.

Потери от усадки равны s8 = 35 МПа.

Потери от ползучести s9:

на уровне арматуры S:

отношение в целях упрощения расчета принимаем, как при определении s6, т.е. = 0,45;

так как = 0,45 < 0,75, то s9 = 128a = 128×1×0,45 = 57,6 МПа;

на уровне арматуры S': поскольку bp < 0, то s6 = 0.

Суммарная величина потерь напряжений:

s1 + s6 + s8 + s9 = 15 + 15,3 + 35 + 57,6 = 122,9 МПа > 100 МПа,

следовательно, согласно п. 1.18, потери не увеличиваем.

Напряжение ssp2 с учетом всех потерь равно:

ssp2 = 500 - 122,9 @ 377,1 МПа.

Усилие от обжатия с учетом всех потерь напряжений P2 определяем по формуле (8), принимая напряжение ss равным сумме потерь от усадки и ползучести, т.е.

ss = 15,3 + 35 + 57,6 = 107,9 МПа.

Поскольку bp < 0, s = 0, то

P2 = ssp2 Asp - ss As = 377,1 × 201 - 107,9 × 50,3 = 70 370 Н.

Эксцентриситет усилия P2 равен:

=
= 170,5 мм.

Пример 2. Дано: свободно опертая балка с поперечным сечением по черт. 4; бетон тяжелый класса В35 (Eb = 3,1 × 104 МПа); передаточная прочность бетона Rbp = 17,5 МПа; напрягаемая арматура из канатов класса К-7 (Rs,ser = 1295 МПа, Es = 18 × 104 МПа) площадью сечения: в растянутой зоне Asp = 1699 мм2 (12 Æ 15), в сжатой зоне A¢sp = 283мм2 (2 Æ 15); натяжение производится на упоры стенда механическим способом; бетон подвергается пропариванию; закрепление канатов на упорах с помощью инвентарных зажимов; длина стенда 20 м; масса балки 11,2 т; длина балки l = 18 м

Требуется определить величину и точку приложения усилия предварительного обжатия с учетом первых потерь напряжения P1 и с учетом всех потерь P2 для сечения в середине пролета, принимая максимально допустимое натяжение арматуры.

Черт. 4. К примеру расчета 2

Р а с ч е т. Определяем геометрические характеристики приведенного сечения согласно п. 1.21, принимая коэффициент a = = = 5,8 (площадь сечения конструктивной ненапрягаемой арматуры не учитывается ввиду ее малости).

Для упрощения расчета высоту свесов полок усредняем.

Площадь приведенного сечения

Ared = А + aАsp + aА'sp = 1500×80 + 280×240 + 200×250 + 5,8 (1699+283) = = 24,9 × 104 мм2

Расстояние от центра тяжести сечения арматуры S до нижней грани балки (учитывая, что сечения всех четырех рядов арматуры одинаковой площади)

= 125 мм.

Статический момент сечения бетона относительно нижней грани балки

S = = 18 900 × 104 мм3.

Расстояние от центра тяжести сечения до нижней грани:

= 774 мм ;

ysp = y0 - ap = 774 - 125 = 649 мм ;

y¢sр = h - a¢р - y0 = 1500 - 50 - 774 = 676 мм .

Момент инерции приведенного сечения

Ired = I + a Asp y2sp + a A¢sр y¢2sр = + 80 × 1500 (774 - 750)2 +

++ 280 × 240 (1380-774)2 ++ 200 × 250(774-125)2 +

+ 5,8 × 1699 × 6492 + 5,8 × 283 × 6762 = 73800 × 106 мм4 .

Из условия (2) определим максимально допустимое напряжение ssp без учета потерь:

ssp = 0,95 Rs,ser = 0,95 × 1295 = 1226 МПа.

Определим первые потери напряжений по поз. 1—6 табл. 4:

потери от релаксации напряжений в арматуре

= 134 МПа ;

потери от температурного перепада между упорами стенда и бетоном при Dt = 65 oС

s2 = 1,25 Dt = 1,25 × 65 = 81 МПа;

потери от деформаций анкеров в виде инвентарных зажимов при Dl = 1,25 + 0,15d = 1,25 + 0,15 × 15 = 3,5 мм и l = 20 м

s3 = 1,8 × 105 = 31,5 МПа;

поскольку напрягаемая арматура не отгибается, потери от трения арматуры отсутствуют, т.е. потери s4 = 0.

Потери от деформаций стальной формы отсутствуют, поскольку усилие обжатия передается на упоры стенда, т. е. s5 = 0.

Таким образом, усилие обжатия РI, с учетом потерь по поз. 1—5 табл. 4 равно:

PI = (Asp+A¢sp) (ssp - s1 - s2 - s3) = (1699+283) ´ (1226-134-81-31,5) =

= 1982 × 980 = 1941 × 103 H = 1941 кН.

Точка приложения усилия РI совпадает с центром тяжести всей напрягаемой арматуры, т.е.

= 447 мм .

Определим потери от быстронатекающей ползучести бетона согласно поз. 6 табл. 4. Для этого по формуле (10) вычислим напряжения в бетоне sbp в середине пролета от действия силы РI и изгибающего момента Mw от собственного веса балки.

Нагрузка от собственного веса балки (см. п. 2.14) равна:

= 6,23 кН/м ,

тогда Мw = = 238 кН×м

(l = 17,5м - расстояние между подкладками при хранении балки).

Напряжение sbp на уровне арматуры S (т.е. при у = уsp = 649 мм)

= 13,3 МПа.

Напряжение bp на уровне арматуры S¢ (т.е. при у = y'sp = 676 мм):

2,1 МПа > 0.

Потери от быстронатекающей ползучести s6 равны:

на уровне арматуры S:

a = 0,25 + 0,025 Rbp = 0,25 + 0,025 × 17,5 = 0,69 < 0,8 ;

поскольку = 0,77 > a = 0,69, то

s6 = 34 a + 72 b = 34×0,69 + 72×2,01 (0,77-0,69) = 35,0 МПа,

где b = 5,25 - 0,185 Rbp = 5,25 - 0,185 × 17,5 = 2,01 < 2,5, но более 1,1;

на уровне арматуры S¢:

6 = 34 = 4,1 МПа.

Напряжение ssp1 с учетом первых потерь равно:

для арматуры S

ssp1 = (ssp - s1 - s2 - s3) - s6 = 980 - 35 = 945 МПа;

для арматуры S¢

sp1 = 980 - 4,1 = 976 МПа.

Определим усилие обжатия с учетом первых потерь P1 и его эксцентриситет e0p1 по формулам (8) и (9):

P1 = ssp1 Asp + sp1 A¢sp = 945 × 1699 + 976 × 283 = 1882 кН ;

e0p1 = = 454 мм.

Определим по формуле (10) максимальное сжимающее напряжение бетона от действия силы P1 без учета собственного веса, принимая у = у0 = 774 мм:

= 16,5 МПа.

Поскольку = 0,94 < 0,95, требование п.1.22 выполняется.

Определим вторые потери напряжений по поз. 8 и 9 табл. 4.

Потери от усадки равны s8 = 35 МПа.

Потери от ползучести s9:

для арматуры S:

отношение в целях упрощения расчета принимаем, как при определении s6, т. е. = 0,77;

так как = 0,77 > 0,75, то s9 = 256a =
= 256
×1 ´ (0,77 - 0,375) = 101 МПа;

для арматуры S¢:

= 15,4 МПа.

Напряжения ssp с учетом всех потерь равны:

для арматуры S

ssp2 = ssp1 - s8 - s9 = 945 - 35 - 101 = 809 МПа;

для арматуры S'

sp2 = sp1 - s8 - s9 = 976 - 35 - 15,4 = 926 МПа.

Определим усилие обжатия с учетом всех потерь P2 и его эксцентриситет e0p2:

P2 = ssp2 Asp + sp2 A'sp = 809 × 1699 + 926 × 283 = 1637 × 103 H = 1637 кН;


= 437 мм.

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6    |    Часть 7    |    Часть 8    |    Часть 9




Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!

Все СНиПы >>    СНиПы «Бетон, ЖБИ, кирпич, фасадные материалы >>



Смотрите также: Каталог «Бетон, ЖБИ, кирпич, фасадные материалы» >>
Компании «Бетон, ЖБИ, кирпич, фасадные материалы» >>
Фотогалереи (1) >>
Статьи (150) >>
ГОСТы (206) >>
СНиПы (14) >>
ВСН (5) >>
Задать вопрос в форуме >>
Подписка на рассылки >>
Copyright © 1999-2024 ВашДом.Ру - проект группы «Текарт»
По вопросам связанным с работой портала вы можете связаться с нашей службой поддержки или оставить заявку на рекламу.
Политика в отношении обработки персональных данных
наверх