Все СНиПы >> СНиПы«Бетон, ЖБИ, кирпич, фасадные материалы»

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6    |    Часть 7

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах. Часть 2

4.26. Расчет оснований по деформациям без учета совместной работы оттаивающего основания и фундаментов (сооружения) надлежит производить исходя из условия

s £ su,                                                                                                   (22)

где s совместная деформация основания и сооружения при оттаивании грунтов в процессе эксплуатации сооружения под воздействием собственного веса грунта и дополнительной нагрузки от сооружения в пределах расчетной глубины оттаивания Н;

su предельно допустимое значение совместной деформации основания и сооружения, устанавливаемое согласно СНиП 2.02.0183, а для мостов СНиП 2.05.03-84.

4.27. Расчет оснований и фундаментов по деформациям с учетом совместной работы основания и сооружения следует производить исходя из условия

,                                                                                      (23)

где Ff расчетные усилия, возникающие в элементах конструкций фундаментов (сооружения) при неравномерных осадках оттаивающего основания;

Ffd предельные значения сопротивления элементов конструкции сооружения, рассчитываемые по нормам проектирования соответствующих конструкций;

gc коэффициент условий работы системы "основание-со­о­ру­же­ние", принимаемый равным 1,25;

gn коэффициент надежности по назначению сооружения, принимаемый равным 1,0; 0,95 и 0,9 соответственно для сооружений I, II и III классов ответственности.

Расчет усилий в элементах фундаментных конструкций и реактивных давлений грунтов следует выполнять, как правило, численными методами на основании уравнений строительной механики с учетом зависимостей реактивных давлений от неравномерных осадок основания. При этом оттаивающее основание допускается рассматривать как линейно-деформируемый слой конечной толщины. Допускается применять другие расчетные схемы, в том числе с использованием вероятностных методов расчета, учитывающих статистическую неоднородность основания. При расчете оснований и фундаментов по деформациям среднее давление на основание под подошвой фундамента от основного сочетания нагрузок не должно превышать расчетного давления на основание R, определяемого в соответствии со СНиП 2.02.0183 по расчетным характеристикам оттаивающих грунтов.

4.28. Осадку оттаивающего в процессе эксплуатации сооружения основания следует определять по формуле

s = sth + sp,                                                                                            (24)

где sth составляющая осадки основания, обусловленная действием собственного веса оттаивающего грунта, определяемая по указаниям п. 4.29;

sp составляющая осадки основания, обусловленная дополнительным давлением на грунт от действия веса сооружения, определяемая по указаниям п. 4.31.

4.29. Составляющую осадки основания sth, м (см), надлежит определять по формуле

,                                                              (25)

где     n число выделенных при расчете слоев грунта;

Ath,i и d коэффициент оттаивания, доли единицы, и коэффициент сжимаемости, кПа1 (см2/кгс), i-го слоя оттаивающего грунта, принимаемые по экспериментальным данным согласно указаниям п. 4.30;

 szg,i вертикальное напряжение от собственного веса грунта в середине i-го слоя грунта, кПа (кгс/см2), определяемое расчетом для глубины zi от уровня планировочных отметок с учетом взвешивающего действия воды;

hi толщина i-го слоя оттаивающего грунта, м(см).

Примечание. Взвешивающее действие воды при определении sth следует учитывать для водопроницаемых грунтов, залегающих ниже расчетного уровня подземных вод, но выше водоупора.

4.30. Коэффициенты оттаивания Ath и сжимаемости оттаивающего грунта d надлежит устанавливать, как правило, по результатам полевых испытаний мерзлых грунтов горячим штампом по методике ГОСТ 2325378. Если значения Ath и d получены по данным лабораторных испытаний грунтов, то расчетные значения их при определении осадок оттаивающего основания следует умножать на поправочный коэффициент k= 1 + Dii, где Dii разность между суммарной льдистостью i-го слоя грунта и льдистостью испытанного образца, взятого из этого слоя. Допускается вводить поправки за неполное смыкание макропор и набухание оттаивающего грунта, если это подтверждено экспериментальными данными.

4.31. Составляющую осадки основания sp, м (см), при расчетной схеме в виде линейно-деформируемого слоя конечной толщины следует определять по формуле

,                                                      (26)

где po дополнительное вертикальное давление на основание под подошвой фундамента, кПа (кгс/см2);

    b ширина подошвы фундамента, м (см);

  kh безмерный коэффициент, определяемый по табл. 7 в зависимости от отношения z/b, где z расстояние от подошвы фундамента до нижней границы зоны оттаивания или кровли непросадочного при оттаивании грунта, м (см);

 di коэффициент сжимаемости i-го слоя грунта, кПа1 (см2/кгс);

 km,i коэффициент, определяемый по табл. 7 в зависимости от отношения z/b, где z расстояние от подошвы фундамента до середины i-го слоя грунта, м (см);

ki и ki1 коэффициенты, определяемые по табл. 8 в зависимости от отношений l/b, z/b и zi1/b, где zi  и zi1 расстояние от подошвы фундамента соответственно до подошвы и кровли i-го слоя грунта, м (см).

Примечание. Расчет развития осадок оттаивающего основания во времени следует производить по скорости протаивания грунтов под сооружением, определяемой теплотехническим расчетом.

Таблица 7

 

 

Коэффициент km,i для грунтов

z/b

kh

крупнооб­ломочных

песчаных и супесей

суглинков

глин

0 0,25

0,25 0,5

0,5 1,5

1,5 3,5

3,5 5,0

5,0

1,35

1,25

1,15

1,10

1,05

1,00

1,35

1,33

1,31

1,29

1,29

1,28

1,35

1,35

1,35

1,35

1,35

1,35

1,36

1,42

1,45

1,52

1,53

1,54

1,55

1,79

1,96

2,15

2,22

2,28

Таблица 8

z/b

Коэффициент k при l/b

 

1

1,4

1,8

2,4

3,2

5

10

0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,5

3,0

3,5

4,0

6,0

10,0

16,0

20,0

0

0,100

0,200

0,299

0,380

0,446

0,449

0,542

0,577

0,606

0,630

0,676

0,708

0,732

0,751

0,794

0,830

0,850

0,857

0

0,100

0,200

0,300

0,394

0,472

0,538

0,592

0,637

0,676

0,708

0,769

0,814

0,846

0,872

0,933

0,983

1,011

1,021

0

0,100

0,200

0,300

0,397

0,482

0,556

0,618

0,671

0,717

0,756

0,832

0,887

0,927

0,960

1,037

1,100

1,137

1,149

0

0,100

0,200

0,300

0,397

0,486

0,565

0,635

0,696

0,750

0,796

0,889

0,958

1,016

1,051

1,151

1,236

1,284

1,300

0

0,100

0,200

0,300

0,397

0,486

0,567

0,640

0,707

0,768

0,820

0,928

1,011

1,123

1,128

1,257

1,365

1,430

1,451

0

0,100

0,200

0,300

0,397

0,486

0,567

0,640

0,709

0,772

0,830

0,952

1,056

1,131

1,205

1,384

1,547

1,645

1,679

0

0,104

0,208

0,311

0,412

0,511

0,605

0,687

0,763

0,831

0,892

1,020

1,138

1,230

1,316

1,550

1,696

2,095

2,236

4.32. Осадку основания s при предварительном оттаивании или замене льдистых грунтов до глубины hb,th для уменьшения деформаций основания (п. 3.25), а также в случаях, когда слой сезонного промерзанияоттаивания не сливается с вечномерзлым грунтом, следует определять по формуле

s = sp,th + sad,                                                                                        (27)

где sp,th осадка уплотнения предварительно оттаянного, замененного или естественного немерзлого слоя грунта толщиной hb,th под воздействием веса сооружения, определяемая в соответствии со СНиП 2.02.0183;

sad дополнительная осадка основания при оттаивании вечномерзлых грунтов в процессе эксплуатации сооружения, определяемая по формуле (25) для интервала глубин d hb,th, где d расчетная глубина оттаивания грунта, считая от уровня планировки под зданием, устанавливаемая теплотехническим расчетом по указаниям рекомендуемого приложения 8.

Глубину предварительного оттаивания или замены грунтов основания hb,th следует устанавливать исходя из условия

sp,th + sad £ su,                                                                                       (28)

где su предельно допустимая для данного сооружения осадка основания, принимаемая по п. 4.26.

4.33. Крен фундамента i на оттаивающем основании, вызванный внецентренными нагрузками, неравномерным оттаиванием и неоднородностью грунтов, а также влиянием близко расположенных фундаментов, следует определять по формуле

i = (sa sb)/b,                                                                                       (29)

где sa и sb осадка краев фундамента;

b размер фундамента в направлении крена.

4.34. Расчет гибких ленточных фундаментов на оттаивающих в процессе эксплуатации сооружения грунтах надлежит производить с учетом переменной по длине фундамента осадки основания, обусловленной неравномерным оттаиванием грунтов под сооружением. При определении реактивных давлений оттаивающего грунта на подошву фундамента допускается рассматривать оттаивающий грунт как линейно-деформируемое основание, характеризуемое переменным по длине фундамента коэффициентом постели.

4.35. Осадку s свайных фундаментов из висячих свай, погруженных в предварительно оттаянные грунты, в том числе при их локальном оттаивании (п. 3.26), следует определять как для условного фундамента, границы которого принимаются согласно СНиП 2.02.0385. При этом следует учитывать возможность проявления отрицательных (негативных) сил трения по периметру условного фундамента или по поверхности отдельных свай (п. 4.38), а также воздействие горизонтальных усилий на фундаменты в периферийных частях зоны оттаивания.

4.36. Расчет свай-стоек по несущей способности при опирании их на скальные или другие малосжимаемые при оттаивании грунты следует производить исходя из условия

,                                                                             (30)

где F расчетная нагрузка на сваю, кН (кгс);

Fu несущая способность (сила предельного сопротивления) основания одиночной сваи, кН (кгс), определяемая по указаниям п. 4.37;

gk коэффициент надежности, принимаемый в соответствии с указаниями СНиП 2.02.0385 в зависимости от вида сооружения, конструкции фундаментов и принятого способа определения несущей способности свай;

gp коэффициент условий работы грунта по боковой поверхности свай в пределах зоны оттаивания, определяемый по опытным данным с учетом способов погружения свай; допускается принимать: g= 1 для буронабивных и буроопускных свай с цементно-песчаным заполнителем пазух и gp = 0,7 для буроопускных свай с пылевато-глинистым заполнителем пазух;

Fneg отрицательная (негативная) сила трения, кН (кгс), определяемая по указаниям п. 4.38.

4.37. Несущая способность (силу предельного сопротивления) основания сваи-стойки Fu, кН (кгс), следует определять по формулам:

для защемленных свай-стоек, заделанных в невыветрелый скальный грунт не менее чем на 0,5 м

;                                                                                  (31)

для незащемленных свай-стоек

,                                                                                      (32)

где Rc,n нормативное значение временного сопротивления грунта под нижним концом сваи одноосному сжатию в оттаявшем водонасыщенном состоянии, кПа (кгс/см2);

А площадь опирания сваи на грунт, м2 (см2), принимаемая для незащемленных свай-стоек сплошного сечения или полых, нижний конец которых заполнен в пределах высоты трех диаметров бетоном, равной площади поперечного сечения брутто; для защемленных свай-стоек площади поперечного сечения нижней части (забоя) скважины;

gg коэффициент надежности по грунту, принимаемый: для незащемленных свай-стоек равным 1,0, для защемленных 1,4;

ld и dr соответственно глубина заделки сваи в скальный грунт и наибольшее поперечное сечение заделанной части сваи, м (см).

4.38. Отрицательную (негативную) силу трения оттаивающего грунта по боковой поверхности сваи

,                                                                           (33)

где up периметр поперечного сечения сваи, м (см);

fn,i отрицательное трение i-го слоя оттаивающего грунта по боковой поверхности сваи, кПа (кгс/см2), определяемое по опытным данным; допускается принимать расчетные значения fn,i по табл. 2 СНиП 2.02.0385;

hi толщина i-го слоя оттаивающего грунта.

4.39.  Расчет свайных фундаментов по прочности материала свай следует производить в соответствии с требованиями СНиП 2.02.0385. Сваи-стойки по прочности материала следует рассчитывать с учетом воспринимаемых ими отрицательных сил трения Fneg.

Расчет оснований и фундаментов по устойчивости и прочности на воздействие сил морозного пучения

4.40. Расчет оснований и фундаментов по устойчивости и прочности на воздействие сил морозного пучения грунтов следует производить как для условий эксплуатации сооружения, так и для условий периода строительства, если до передачи на фундаменты проектных нагрузок возможно промерзание грунтов слоя сезонного оттаивания (промерзания). При необходимости в проекте должны быть предусмотрены мероприятия по предотвращению выпучивания фундаментов в период строительства.

4.41. Устойчивость фундаментов на действие касательных сил морозного пучения грунтов надлежит проверять по условию

,                                                                        (34)

где tfh расчетная удельная касательная сила пучения, кПа (кгс/см2), принимаемая согласно указаниям п. 4.42;

  Afh  площадь боковой поверхности смерзания фундамента в пределах расчетной глубины сезонного промерзанияот­таи­вания грунта, м2 (см2);

F расчетная нагрузка на фундамент, кН (кгс), принимаемая с коэффициентом 0,9 по наиболее невыгодному сочетанию нагрузок и воздействий, включая выдергивающие (ветро­вые, крановые и т. п.);

Fr расчетное значение силы, удерживающей фундамент от выпучивания, кН (кгс), принимаемое по указаниям п. 4.43;

 gc коэффициент условий работы, принимаемый равным 1,0;

 gn   коэффициент надежности по назначению сооружения, принимаемый равным 1,1, а для фундаментов опор мостов 1,3.

4.42. Расчетную удельную касательную силу морозного пучения  tfh, кПа (кгс/см2), следует определять, как правило, опытным путем. Для сооружений II и III классов ответственности значения tfh допускается принимать по табл. 9 в зависимости от состава, влажности и глубины сезонного промерзания и оттаивания грунтов dth.

Таблица 9

 

Грунты

и

степень

водонасыщения

Значения tfh, кПа (кгс/см2), при глубине сезонного промерзания оттаивания dth, м

 

1,0

2,0

3,0

Пылевато-глинистые при показателе текучести IL > 0,5, пески мелкие и пылеватые при степени влажности Sr > 0,95

130

(1,3)

110

(1,1)

90

(0,9)

Пылевато-глинистые при 0,25 < IL £ 0,5, пески мелкие и пылеватые при 0,8 < Sr £ 0,95, крупнообломочные с заполнителем (глинистым, мелкопесчаным и пылеватым) свыше 30 %

100

(1,0)

90

(0,9)

70

(0,7)

Пылевато-глинистые при IL ³ 0,25, пески мелкие и пы­леватые при 0,6 <Sr £ 0,8, а также крупнообломочные с заполнителем (пылевато-глинистым, мелкопесчаным и пылеватым) от 10 % до 30 %

80

(0,8)

70

(0,7)

50

(0,5)

Примечания: 1. Приведенные в таблице значения tfh относятся к поверхности бетонного фундамента. Для фундаментов из других материалов табличные значения tfh должны умножаться на коэффициент gaf, значения которого даны в рекомендуемом приложении 2.

2. Для поверхностей фундаментов, покрытых специальными составами, уменьшающими силы смерзания, а также при применении других противопучинных мероприятий, значение tfh следует принимать на основании опытных данных.

4.43. Расчетное значение силы Fr, кН (кгс), удерживающей фундаменты от выпучивания, следует определять по формулам:

при использовании вечномерзлых грунтов по принципу I

;                                                                              (35)

при использовании вечномерзлых грунтов по принципу II

,                                                                                  (36)

где u периметр сечения поверхности сдвига, м (см), принимаемый равным: для свайных и столбчатых фундаментов без анкерной плиты периметру сечения фундамента; для столбчатых фундаментов с анкерной плитой периметру анкерной плиты;

Raf,i расчетное сопротивление i-го слоя вечномерзлого грунта сдвигу по поверхности смерзания, кПа (кгс/см2), принимаемое по таблицам рекомендуемого приложения 2;

hi толщина i-го слоя мерзлого или талого грунта, расположенного ниже подошвы слоя сезонного промерзанияот­таи­ва­ния, м (см);

fi расчетное сопротивление i-го слоя талого грунта сдвигу по поверхности фундамента, кПа (кгс/см2), принимаемое в соответствии с требованиями СНиП 2.02.0385.

4.44. Заанкеренный столбчатый фундамент должен быть проверен на отрыв силами морозного пучения стойки фундамента от анкерной плиты. Усиление Ffh, кН (кгс), разрывающее заанкеренный фундамент, определяется по формуле

Ffh = tfhAfh F,                                                                                     (37)

где Afh площадь боковой поверхности сбойки фундамента, находящейся в пределах слоя сезонного промерзанияоттаивания грунта, м2 (см2).

4.45. Поверхностные и малозаглубленные фундаменты, закладываемые в слое сезонного промерзанияоттаивания грунтов, следует рассчитывать по устойчивости на действие нормальных сил морозного пучения и по деформациям.

Устойчивость фундаментов на действие нормальных сил морозного пучения проверяется по формуле

,                                                                                 (38)

где pfh удельное нормальное давление пучения грунта на подошву фундамента, кПа (кгс/см2), устанавливаемое по опытным данным;

  Аf площадь подошвы фундамента, м2 (см2).

Остальные обозначения те же, что в формуле (34).

Расчет по деформациям следует производить с учетом совместной работы сооружения и неравномерно выпучиваемого основания. При этом возникающее в результате неравномерных поднятий и опусканий фундаментов дополнительные усилия в конструкциях сооружения не должны превышать предельно допустимых значений, а крены и прогибы не препятствовать нормальной эксплуатации сооружения.

5. Особенности проектирования оснований и фундаментов на сильнольдистых вечномерзлых грунтах и подземных льдах

5.1. При проектировании оснований и фундаментов на сильнольдистых вечномерзлых грунтах и подземных льдах следует предусматривать использование таких грунтов в качестве основания, как правило, по принципу I. В случаях необходимости использования сильнольдистых грунтов по принципу II должны обязательно предусматриваться мероприятия по их предварительному оттаиванию или замене льдистых грунтов на непросадочные на расчетную глубину согласно указаниям пп. 3.26 и 4.32.

5.2. Для предотвращения деформаций поверхности планировки у сооружений и развития термокарста вследствие оттаивания подземных льдов или сильнольдистых грунтов, залегающих на небольшой глубине от поверхности, необходимо предусматривать устройство теплоизоляционной подсыпки в пределах всей застраиваемой площадки. Толщина подсыпки hs определяется теплотехническим расчетом условия сохранения природного положения верхней поверхности вечномерзлого грунта или ее повышения. Для сплошных подсыпок значение hs, м, допускается определять по формуле

,                                                                     (39)

где dth,n и dths,n нормативные глубины сезонного оттаивания соответственно природного грунта и грунта подсыпки, м, определяемые согласно обязательному приложению 3;

d’th допустимая глубина сезонного оттаивания природного грунта под подсыпкой, м.

Требования к материалу подсыпок, способам их укладки и уплотнения устанавливаются в проекте с учетом местных условий и указаний пп. 3.23 и 3.34.

5.3. Основания фундаментов, закладываемых в пределах толщины подсыпки, следует рассчитывать по несущей способности и деформациям в соответствии с требованиями СНиП 2.02.0183. При этом расстояние от цоколя сооружения до бровки подсыпки должно быть не менее 3 м, а крутизна откосов подсыпки не более 1:1,75 для песков и 1:2 для прочих материалов.

Если столбчатые или ленточные фундаменты устанавливаются на вечномерзлые грунты, содержащие подземные льды, между их подошвой и слоем подземного льда должна быть прослойка природного грунта или искусственно уложенная с уплотнением грунтовая подушка. Толщину этой прослойки (подушки) следует принимать исходя из расчета основания по деформации, но не менее четверти ширины подошвы фундамента.

5.4. При устройстве свайных фундаментов на участках с сильнольдистыми грунтами и подземными льдами следует применять буроопускные сваи с заливкой известково-песчаных или цементно-песчаных растворов с расстоянием в осях не менее двух диаметров скважины. Сваи не должны опираться на прослои льда, а под их торцом следует устраивать уплотненную грунтовую подушку толщиной не менее диаметра сваи.

5.5. Расчет оснований по несущей способности следует производить:

для столбчатых фундаментов на сильнольдистых грунтах и подземных льдах по указаниям п. 5.7;

для свайных фундаментов в сильнольдистых грунтах по указаниям п. 5.9, а в подземных льдах по данным полевых испытаний свай статической вдавливающей нагрузкой.

5.6. Расчет оснований по деформациям следует производить:

для столбчатых фундаментов на сильнольдистых грунтах и подземных льдах по указаниям п. 5.8;

для свайных фундаментов в сильнольдистых грунтах и подземных льдах по данным полевых испытаний свай статической вдавливающей нагрузкой.

5.7. Силу предельного сопротивления (несущую способность) основания столбчатого фундамента на сильнольдистых грунтах и подземных льдах следует определять по указаниям п. 4.7, при этом значения R и Raf допускается принимать по таблицам 2 и 3 рекомендуемого приложения 2.

5.8. Осадку основания столбчатого фундамента на сильнольдистых грунтах и подземных льдах s следует определять по формуле

s = sp + st                                                                                              (40)

где sp осадка, обусловленная уплотнением основания под нагрузкой, определяемая по указаниям п. 1 рекомендуемого приложения 7;

st осадка, обусловленная пластичновязким течением грунта за заданный срок эксплуатации сооружения, определяемая по формуле

s = tun,                                                                                                  (41)

здесь tu заданный срок эксплуатации здания (сооружения), год;

n скорость осадки, м/год (см/год), определяемая сходя из модели линейно или нелинейновязкого полупространства; допускается определять по рекомендуемому приложению 7.

5.9. Несущую способность основания свайного фундамента Fu в сильнольдистых грунтах следует определять, как правило, по данным полевых испытаний свай. Допускается определять несущую способность сваи расчетом в соответствии с указаниями пп. 4.7 и 4.8 по наименьшему значению Fu, полученному по условиям ее сопротивления сдвигу по грунтовому раствору и сдвигу грунтового раствора по контакту с льдистым грунтом. В последнем случае значение Fu, кН (кгс), следует рассчитывать по формуле

,                          (42)

где gt и gc обозначения те же, что и в формуле (3);

 R  расчетное сопротивление сильнольдистого грунта или льда под нижним концом сваи, кПа (кгс/см2), определяемое для сильнольдистых грунтов интерполяцией между значениями R по табл. 1 и 7 рекомендуемого приложения 2, а для льдов по табл. 7 того же приложения;

 Aw площадь поперечного сечения скважины, м2 (см2);

ii,j льдистость за счет ледяных включений j-го слоя грунта;

Rshj; Rsh,i,j расчетные сопротивления сдвигу грунтового раствора по вечномерзлому грунту и грунтового раствора по льду для середины i-го слоя, кПа (кгс/см2), принимаемые соответственно по табл. 4 и 7 рекомендуемого приложения 2;

Ashj площадь поверхности сдвига в j-ом слое, определяемая в зависимости от диаметра скважины, м2 (см2).

Если прочность смерзания грунтового раствора с поверхностью сваи Raf < Rsh, то расчет несущей способности сваи Fu по формуле (42) следует производить при значениях Rsh = Raf, принимая площадь поверхности сдвига в i-ом слое грунта Ashj равной площади поверхности сваи в этом слое.

Примечание. В случаях, когда под торцом сваи предусматривается устройство грунтовой подушки, то значение R в формуле (42) принимается для грунта подушки. При этом предельная нагрузка на торец сваи определяется по формуле (42) принимается для грунта подушки. При этом предельная нагрузка на торец сваи определяется по формуле (42), как для сваи, диаметр которой равен диаметру скважины, а длина толщине подушки.

6. Особенности проектирования оснований и фундаментов на засоленных вечномерзлых грунтах

6.1. Для проектирования фундаментов на засоленных вечномерзлых грунтах материалы изысканий должны содержать данные об условиях залегания засоленных грунтов, степени их засоленности, а также о химическом составе водно-растворимых солей.

Засоленные вечномерзлые грунты могут использоваться в качестве основания сооружений как по принципу I, так и по принципу II. При этом должно учитываться повышенное коррозийное воздействие засоленных грунтов на материал фундаментов.

Примечание. Пылеватые грунты морского побережья Севера с преобладанием солей натрий-калиевого состава должны относиться к засоленным при содержании в них растворимых солей от 0,05 % и выше.

6.2. Основания и фундаменты на засоленных вечномерзлых грунтах при использовании таких грунтов в качестве основания по принципу I следует проектировать согласно основным указаниям пп. 3.103.23 с учетом следующих особенностей:

а) температура начала замерзания засоленных грунтов Tbf ниже температуры замерзания аналогичных видов незасоленных грунтов и ее следует устанавливать опытным путем с учетом указаний обязательного приложения 1;

б) переход засоленных грунтов из пластично-мерзлого в твердомерзлое состояние происходит при более низких температурах, чем аналогичных незасоленных грунтов, и должен приниматься по данным опытного определения коэффициента их сжимаемости df с учетом указаний п. 2.3;

в) засоленные мерзлые грунты отличаются пониженной прочностью и малыми значениями сопротивлений сдвигу по поверхности смерзания с фундаментом;

г) на участках с засоленными грунтами может быть несколько засоленных горизонтов с разной степенью засоленности, а также могут встречаться отдельные слои или линзы насыщенных сильно минерализованными водами грунтов, находящихся в немерзлом состоянии при отрицательной температуре (криопеги), вскрытие которых скважинами при погружении свай приводит к повышенному засолению грунтов по всей длине сваи.

6.3. При строительстве на засоленных грунтах следует применять фундаменты, обеспечивающие наиболее полное использование сопротивление мерзлых грунтов нормальному давлению (столбчатые и ленточные фундаменты, сваи с уширенной пятой и др.). При буроопускном способе погружения свай скважины должны быть диаметром не менее чем на 10 см большим поперечного сечения сваи и заполняться, как правило, известково-песчаным или цементно-пес­ча­ным раствором. Под нижним концом сваи следует устраивать уплотненную подушку из щебня.

6.4. Несущую способность оснований столбчатых и свайных фундаментов на засоленных вечномерзлых грунтах при использовании их по принципу I следует определять согласно указаниям пп. 4.74.8. При этом расчетные значения сопротивления грунтов нормальному давлению и сдвигу по поверхности смерзания R и Raf надлежит принимать, как правило, по опытным данным. Для сооружений III класса ответственности, а также при привязке типовых проектов к местным условиям, значения R и Raf допускается принимать по табл. 5 и 6 рекомендуемого приложения 2.

6.5. При расчетах несущей способности оснований буроопускных свай засоленность грунтового раствора и сопротивления сдвигу по поверхности сваи Raf следует принимать по засоленности и значениям Raf прилегающего природного грунта. Если несущая способность буроопускных свай определена по результатам полевых испытаний, то расчетную несущую способность таких свай следует принимать с понижающим коэффициентом, учитывающим изменение степени засоленности грунтового раствора в процессе эксплуатации сооружения, устанавливаемым по опыту местного строительства или по данным специальных исследований.

Примечание. Для опускных и буроопускных свай расчетные значения Raf допускается принимать при средневзвешенном значении засоленности грунтов по длине сваи.

6.6. Расчет оснований и фундаментов на засоленных вечномерзлых грунтах по деформациям следует производить согласно указаниям пп. 4.207.21 как на пластичномерзлых грунтах.

6.7. При расчетных деформациях оснований, сложенных мерзлыми засоленными грунтами, больше предельных или недостаточной несущей способности основания следует предусматривать частичную или полную замену засоленных грунтов на незасоленные, дополнительное понижение температуры грунтов, прорезку засоленных слоев грунта глубокими фундаментами, устройство фундаментов на подсыпках, распределяющих нагрузки на мерзлые грунты оснований, и другие мероприятия, а в необходимых случаях осуществлять строительство с использованием засоленных вечномерзлых грунтов в качестве оснований по принципу II.

6.8. Основания и фундаменты на засоленных вечномерзлых грунтах при использовании их в качестве оснований сооружений по принципу II следует проектировать в соответствии с указаниями пп. 3.243.32 и требованиями СНиП 2.02.0183, СНиП 2.02.0385 и СНиП 2.03.1185.

7. Особенности проектирования оснований и фундаментов на биогенных вечномерзлых грунтах

7.1. Основания и фундаменты на биогенных вечномерзлых грунтах (заторфованных и торфах), а также на грунтах с примесью органических остатков надлежит проектировать в соответствии с указаниями разд. 4 и требованиями СНиП 2.02.01-83 с учетом их большой сжимаемости под нагрузкой, проявлением пластических деформаций в широком диапазоне отрицательных температур, пониженной прочностью смерзания с фундаментами, низкой теплопроводностью и замедленной стабилизацией осадок при оттаивании.

7.2. При использовании биогенных грунтов в качестве оснований по принципу I следует применять столбчатые и свайные фундаменты, а также малозаглубленные и поверхностные фундаменты на подсыпках. Сваи следует погружать, как правило, буроопускным способом в скважины диаметром на 10 см большим поперечного сечения сваи с заполнением пазух известково-песчаным раствором; опирание свай на прослои торфа не допускается. Под подошвой столбчатых фундаментов следует устраивать песчаную подушку толщиной не менее половины ширины подошвы фундамента. При небольшой толщине покровного торфяного слоя следует предусматривать его удаление.

7.3. Расчет несущей способности оснований столбчатых и свайных фундаментов на биогенных грунтах при их использовании по принципу I производится согласно указаниям пп. 4.74.8. При этом расчетные значения сопротивления этих грунтов нормальному давлению и сдвигу по поверхности смерзания с фундаментом R и Raf следует принимать, как правило, по опытным данным. Для сооружений III класса ответственности, а также для предварительных расчетов оснований значения R и Raf допускается принимать по табл. 8 рекомендуемого приложения 2.

Основания фундаментов, возводимых на подсыпках, следует рассчитывать по несущей способности грунтов подсыпки с проверкой силы предельного сопротивления основания на уровне поверхности природных биогенных грунтов с учетом расчетной глубины сезонного оттаивания. Если расчетная глубина оттаивания больше толщины подсыпки, то основание должно быть также рассчитано по деформациям.

7.4.  Расчет оснований, сложенных биогенными грунтами, по деформациям надлежит производить: столбчатых по указаниям пп. 4.204.21; свайных по результатам полевых испытаний свай статической вдавливающей нагрузкой.

7.5. Основания и фундаменты на биогенных грунтах при использовании таких грунтов в качестве оснований по принципу II необходимо проектировать в соответствии с указаниями пп. 3.243.32 и требованиями СНиП 2.02.01-83 и СНиП 2.02.03-85.

8. Особенности проектирования оснований и фундаментов на вечномерзлых грунтах в сейсмических районах

8.1. Основания и фундаменты сооружений, возводимых на вечномерзлых грунтах на площадках с расчетной сейсмичностью 7, 8 и 9 баллов следует проектировать с учетом требований СНиП II-7-81, СНиП 2.02.01-83, СНиП 2.02.03-85, СНиП 2.05.03-84 и требований настоящих норм.

8.2. Для сейсмических районов с расчетной сейсмичностью 7, 8 и 9 баллов следует предусматривать использование вечномерзлых грунтов в качестве основания, как правило, по принципу I. При невозможности использования грунтов в качестве основания по принципу I допускается использование их по принципу II при условии опирания фундаментов на скальные или другие малосжимаемые при оттаивании грунты или на предварительно оттаянные и уплотненные грунты.

8.3. В сейсмических районах следует применять те же виды свай, что и в несейсмических районах, кроме свай без поперечного армирования. Глубина погружения свай в грунт (исключая сваи-стойки) должна быть не менее 4 м.

8.4. Расчет оснований и фундаментов по несущей способности на вертикальную нагрузку с учетом сейсмических воздействий следует производить согласно указаниям п. 4.6, при этом силу предельного сопротивления основания надлежит определять с учетом указаний пп. 8.58.6, а коэффициент надежности gn принимать:

при использовании вечномерзлых грунтов в качестве основания по принципу I по указаниям п. 4.6;

при использовании вечномерзлых грунтов в качестве основания по принципу II для фундаментов на естественном основании gn = 1,5, а для свайных по требованиям СНиП 2.02.03-85.

8.5. Несущую способность вертикально нагруженной висячей сваи Fu, а также столбчатого фундамента при использовании вечномерзлых грунтов в качестве основания по принципу I, с учетом сейсмических воздействий следует определять согласно указаниям п. 4.7; при этом расчетное сопротивление грунта или грунтового раствора сдвигу по поверхности смерзания с фундаментом Raf и расчетное давление мерзлого грунта под нижним концом сваи или подошвой столбчатого фундамента R надлежит умножать на коэффициент условий работы основания geq, принимаемый по табл. 10.

Таблица 10

Расчетная сейсмичность

Коэффициент

условий работы geq для грунтов

в баллах

твердомерзлых

пластичномерзлых

сыпучемерзлых

7

8

9

1,0

1,0

1,0

0,9

0,8

0,7

0,95

0,9

0,8

Примечания: 1. Значения коэффициентов ged следует умножать на 0,85; 1,0; 1,15 для сооружений, возводимых в районах с повторяемостью землетрясений 1, 2, 3 соответственно.

2. При опирании свай-стоек на скальные или несжимаемые крупноблочные грунты значение коэффициента ged принимается равным 1,0.

Для свай в пластичномерзлых грунтах значение Raf следует принимать равным нулю в пределах от верхней границы вечномерзлых грунтов до расчетной глубины hd, м (см), определяемой по формуле

,                                                                                           (43)

где ae коэффициент деформации системы "свая-грунт", определяемый по результатам испытаний в соответствии с п. 8.6.

8.6. Расчет свай по прочности материала на совместное действие расчетных усилий (продольной силы, изгибающего момента и поперечной силы) при использовании вечномерзлых оснований по принципу I следует производить в зависимости от расчетных значений сейсмических нагрузок в соответствии с требованиями СНиП 2.02.03-85 с учетом указаний п. 4.18. При этом для свай в пластично-мерзлых грунтах коэффициент деформации системы "свая-грунт" ae м1 (см1), следует определять по результатам испытаний свай статической горизонтальной нагрузкой по формуле

,                                                                           (44)

где Fh горизонтальная нагрузка, кН (кгс), принимаемая равной 0,7Fh,u;

здесь Fh,u горизонтальная предельная нагрузка, кН (кгс), в уровне поверхности грунта, при которой перемещение испытуемой сваи начинает возрастать без увеличения нагрузки;

u0 горизонтальное перемещение сваи в уровне поверхности грунта, м (см), определяемое по графику зависимости горизонтальных перемещений от нагрузки при условной стабилизации перемещений, если расчет ведется на статические нагрузки, и без условной стабилизации перемещений, если расчет ведется на сейсмические воздействия;

Eb модуль упругости материала свай, кПа (кгс/см2);

   I момент инерции сечения сваи, м4 (см4).

8.7. Проверку основания столбчатого фундамента на горизонтальную и внецентренно сжимающую нагрузки с учетом сейсмических воздействий при использовании вечномерзлых грунтов в качестве основания по принципу I следует производить на опрокидывание и сдвиг по подошве фундамента с учетом указаний п. 4.17.

При действии сейсмических нагрузок, создающих моменты сил в обоих направлениях подошвы фундамента, расчет основания надлежит производить раздельно на действие сил и моментов в каждом направлении независимо друг от друга.

8.8. Расчет оснований и фундаментов с учетом сейсмических воздействий при использовании вечномерзлых грунтов по принципу II необходимо производить в соответствии с требованиями СНиП 2.02.01-83, СНиП 2.02.03-85 и указаниями пп. 4.234.37 по расчету оттаивающих оснований. При этом отрицательные (негативные) силы трения, вызванные осадкой оттаивающих грунтов, в расчетах оснований на сейсмические воздействия не учитываются, если оттаивающее основание сложено песчаными и крупнообломочными грунтами, осадки которых завершаются в процессе их оттаивания.

9. Особенности проектирования оснований и фундаментов мостов и труб под насыпями

9.1. Основания и фундаменты мостов и труб под насыпями (труб), возводимых на территориях распространения вечномерзлых грунтов, следует проектировать с учетом дополнительных требований, содержащихся в настоящем разделе.

9.2. В проектах фундаментов мостов и труб необходимо дополнительно (по сравнению с фундаментами зданий) учитывать влияние следующих факторов:

воздействие на сооружения, кроме вертикальных, значительных горизонтальных сил от временных подвижных нагрузок, давлений грунта и льда;

уменьшение несущей способности оснований вследствие размывов дна водотока или отепляющего воздействия воды на вечномерзлые грунты;

возрастание сил морозного пучения грунтов из-за повышенной их влажности вблизи водотоков и уменьшение этих сил при увеличении толщины снегового покрова;

нарушение устойчивости береговых склонов вследствие проявления оползневых процессов;

появление наледи в пределах сооружений.

9.3. Нагрузки и воздействия на фундаменты мостов и труб следует принимать в соответствии с требованиями СНиП 2.05.03-84.

9.4. В основаниях фундаментов мостов вечномерзлые грунты следует использовать преимущественно по принципу I, если на уровне низа свайных элементов (свай-столбов, свай-оболочек) в течение всего периода эксплуатации сооружений грунты будут находиться в твердомерзлом состоянии. Допускается использовать по принципу I пластичномерзлые грунты, включая засоленные, при условии, что в течение всего периода эксплуатации сооружений будет обеспечена их отрицательная температура, требуемая по расчету несущей способности оснований.

Возможность использования вечномерзлых грунтов в качестве оснований по принципу II для фундаментов мелкого заложения и свайных должна определяться исходя из общих требований пп. 3.3, 3.4 и 3.6.

9.5. Прогноз изменений температурного режима вечномерзлых грунтов, используемых в качестве оснований по принципу I, осуществление в случае необходимости специальных мероприятий по обеспечению мерзлого состояния грунтов и контроль их температуры в течение всего периода эксплуатации сооружений следует выполнять по указаниям ведомственных строительных норм.

9.6. Сезоннодействующие охлаждающие устройства (СОУ) необходимо применять в случаях практической невозможности или недостаточной эффективности других решений для поддержания на весь период эксплуатации сооружений температуры грунтов, требуемой по расчету несущей способности оснований. Число СОУ следует принимать по расчету с повышающим коэффициентом 1,4.

9.7. Фундаменты мостов при использовании вечномерзлых грунтов в качестве оснований по принципам I и II следует проектировать, как правило, свайными с ростверком, расположенным над поверхностью грунта или воды. При этом надлежит предусматривать меры, исключающие возможность повреждения свай ледоходом, корчеходом или другими неблагоприятными воздействиями.

Фундаменты мелкого заложения (на естественном основании) допускается проектировать для мостов, возводимых, как правило, на используемых по принципу II вечномерзлых грунтах, если после полного оттаивания таких грунтов осадки и крены опор не будут превышать предельно допустимых значений по условиям нормальной эксплуатации сооружений.

Для труб следует предусматривать преимущественно фундаменты мелкого заложения независимо от вида грунтов и принципа их использования в качестве основания при условии, что суммарное значение осадки используемых по принципу II грунтов может быть компенсировано строительным подъемом лотка труб.

9.8. Вечномерзлые грунты в основании фундаментов малого моста или трубы и прилегающих участков насыпи, как правило, следует использовать по одному принципу, не допуская опирания их частично на мерзлые и частично на немерзлые или оттаивающие грунты.

9.9. В грунтах, подверженных морозному пучению, независимо от принятого принципа их использования в качестве основания подошву фундаментов мелкого заложения для мостов и труб следует заглублять не менее чем на величину, указанную в разд. 12 СНиП 2.02.01-83, а подошва расположенного в грунте ростверка свайных фундаментов не менее чем на 0,25 м ниже расчетной глубины сезонного промерзанияоттаивания грунтов.

Подошву высокого ростверка свайных фундаментов мостов следует располагать с зазором от поверхности грунта не менее 0,5 м в устоях и 1 м в промежуточных опорах.

9.10. В подверженных морозному пучению грунтах подошву ростверка свайных фундаментов или фундаментов мелкого заложения мостов и труб допускается располагать в пределах слоя сезонного промерзанияоттаивания при условии, что нижняя граница толщи таких грунтов залегает не менее чем на 1 м ниже расчетной глубины промерзания и, кроме того, в пределах зоны промерзания отсутствует вероятность образования линзового льда, в том числе и от напорных подземных вод.

9.11. Подошву фундаментов мелкого заложения и нижние концы свай не допускается опирать непосредственно на подземные льды, сильнольдистые грунты, а также на используемые по принципу II биогенные вечномерзлые грунты.

9.12. Расчеты оснований фундаментов мостов и труб следует производить:

а) при использовании твердомерзлых грунтов по принципу I по несущей способности;

б) при использовании вечномерзлых грунтов по принципу II, а пылевато-глинистых пластичномерзлых и по принципу I по несущей способности и по деформациям.

Допускается не определять осадки оснований фундаментов мостов:

а) всех систем и пролетов при опирании фундаментов на вечномерзлые грунты, используемые по принципу I, за исключением пластичномерзлых пылевато-глинистых грунтов;

б) внешне статически определимых систем железнодорожных мостов с пролетами до 55 м и автодорожных с пролетами до 105 м при опирании фундаментов на используемые по принципу II скальные и другие малосжимаемые при оттаивании грунты.

Расчеты оснований труб следует производить, как правило, по несущей способности. На сильносжимаемых при оттаивании грунтах, используемых по принципу II, основания труб следует рассчитывать по несущей способности и по деформациям, включая определение их осадки.

9.13. Расчет основания свай для фундаментов опор мостов по несущей способности вечномерзлых грунтов, используемых по принципу I, следует производить согласно указаниям пп. 4.6 и 4.7. При этом значение gn в формуле (2) следует принимать равным 1,4 независимо от числа свай в фундаменте и от положения подошвы ростверка по отношению к поверхности грунта. Значения коэффициентов gc и gt в формуле (3) допускается принимать равным 1,0.

Для кратковременной части нагрузок расчетные значения R и Raf исходя из указаний п. 4.8 допускается принимать с повышающим коэффициентом nt, равным: для свайных фундаментов железнодорожных мостов 1,35 при одновременном действии постоянных и временных вертикальных нагрузок; 1,5 при действии постоянных и временных совместно с временными горизонтальными нагрузками (включая сейсмические нагрузки); для свайных фундаментов автодорожных мостов соответственно 1,5 и 1.75.

Для железнодорожных мостов на станционных и подъездных путях, городских, а также других мостов, на которых возможны систематические остановки на неопределенное время поездов или автотранспорта, значение коэффициента gc в формуле (3) следует принимать равным 1,0.

9.14. Расчет оснований свайных фундаментов по несущей способности вечномерзлых грунтов, используемых по принципу II, следует производить в соответствии с требованиями СНиП 2.02.03-85. При этом расчетное сопротивление оттаивающих грунтов под торцом свай следует принимать по СНиП 2.02.03-85, как для буровых свай.

Расчет по несущей способности оснований фундаментов мелкого заложения на вечномерзлых грунтах, используемых по принципу II, надлежит производить по СНиП 2.05.03-84.

9.15. Фундаменты береговых, переходных и промежуточных опор мостов на крутых склонах, а также фундаменты устоев при высоких насыпях в случаях расположения под несущим слоем пласта немерзлого или оттаивающего (в период эксплуатации моста) глинистого грунта или прослойки насыщенного водой песка, подстилаемого глинистым грунтом, необходимо рассчитывать по устойчивости против глубокого сдвига (смещения фундамента совместно с грунтом) по круглоцилиндрической или другой более опасной поверхности скольжения. Для указанных условий надлежит также проверять возможность появления местных оползневых сдвигов на ранее устойчивых склонах вследствие дополнительного их нагружения весом насыпи и опоры, нарушения устойчивости пластов грунта в процессе производства работ или изменения режима (уровня и скорости течения) подземных и поверхностных вод.

9.16. Фундаменты мостов, возводимых на вечномерзлых грунтах, используемых в качестве оснований по принципу II, следует рассчитывать для условий полного оттаивания грунтов основания независимо от их состояния (мерзлое или талое) в период строительства. Расчет по прочности и трещиностойкости свайных элементов следует производить на усилия в расчетных сечениях, возникающие как для мерзлого, так и оттаявшего состояния грунтов основания.

9.17. Свайные фундаменты надлежит рассчитывать на совместное действие вертикальных и горизонтальных сил и моментов, принимая перемещения фундаментов пропорциональными действующим усилиям. Независимо от принципа использования грунтов в качестве основания, не следует учитывать сопротивление грунтов перемещениям заглубленного в грунт ростверка фундаментов. В расчетах, включающих определение свободной длины свай, оттаявшие и пластичномерзлые грунты допускается рассматривать как линейно-деформируемую среду, характеризуемую коэффициентом постели, принимаемым как для немерзлых грунтов.

При использовании грунтов в качестве основания по принципу I в расчете допускается принимать, что каждый свайный элемент жестко заделан в твердомерзлом грунте на глубине d, считая от уровня, соответствующего расчетной (максимальной) температуре, при которой данный грунт переходит в твердомерзлое состояние; здесь d диаметр или больший размер поперечного сечения элемента в направлении действия внешних нагрузок.

9.18. В сейсмических районах фундаменты мостов допускается проектировать на любых грунтах, используемых в качестве основания по принципу I. Если грунты используются по принципу II, то следует предусматривать опирание подошвы фундаментов или нижних концов свай преимущественно на скальные или другие малосжимаемые при оттаивании грунты. При учете сейсмических нагрузок расчет свайных фундаментов следует производить согласно указаниям пп. 8.48.8.

Приложение 1

Обязательное

Физические и теплофизические характеристики вечномерзлых грунтов

1. В состав физических и теплофизических характеристик, определяемых для вечномерзлых грунтов, входят:

а) суммарная влажность мерзлого грунта wtot и влажность мерзлого грунта между включениями льда wm;

б) суммарная льдистость мерзлого грунта itot и льдистость мерзлого грунта за счет включений льда ii;

в) степень заполнения объема пор мерзлого грунта льдом и не замерзшей водой Sr;

г) влажность мерзлого грунта за счет не замерзшей воды ww;

д) температура начала замерзания грунта Tbf;

е) теплофизические характеристики грунта (теплопроводность l и объемная теплоемкость С);

ж) теплота таяния (замерзания) грунта zn;

2. Суммарная влажность мерзлого грунта wtot и влажность мерзлого грунта между включениями льда wm определяются в соответствии с ГОСТ 518084.

3. Суммарная льдистость мерзлого грунта itot, льдистость мерзлого грунта за счет включений льда wm и степень заполнения объема пор мерзлого грунта льдом и не замерзшей водой Sr определяются в соответствии с ГОСТ 2510082.

4. Влажность мерзлого грунта за счет не замерзшей воды ww определяется, как правило, опытным путем. В случаях, предусмотренных п. 2.10, значения ww, доли единицы, для незасоленных мерзлых грунтов допускается определять по формуле

ww = kwwp,                                                                                      (1)

где kw  коэффициент, принимаемый по табл. 1 в зависимости от числа пластичности Ip и температуры грунта Т, ° С;

w влажность грунта на границе пластичности (раскатывания), доли единицы.

Таблица 1

Значения коэффициента kw

Грунты

Число пластичности

Коэффициент kw при температуре грунта T, ° C

 

Ip, доля единицы

0,3

0.5

1

2

3

4

6

8

10

Пески и супеси

Ip £ 0,02

0

0

0

0

0

0

0

0

0

Супеси

0,02 < Ip £ 0,07

0.6

0,50

0,40

0,35

0,33

0,30

0,28

0,26

0,25

Суглинки

0,07 < Ip £ 0,13

0,7

0,65

0,60

0,50

0,48

0,45

0,43

0,41

0,40

Суглинки

0,13 < Ip £ 0,17

*

0,75

0,65

0,55

0,53

0,50

0,48

0,46

0,45

Глины

Ip > 0,17

*

0,95

0,90

0,65

0,63

0,60

0,58

0,56

0,55

Примечание. В таблице знак “*” означает, что вся вода в порах грунта не замерзшая.

5. Температура начала замерзания грунта Tbf ° С, характеризует температуру перехода грунта из талого в мерзлое состояние. Для незасоленных песчаных и крупнообломочных грунтов значение Tbf принимается по ГОСТ 2510082 равным 0 ° С. Температуру начала замерзания пылевато-глинистых, засоленных и биогенных (за­тор­фованных) грунтов Tbf следует устанавливать опытным путем. Для предварительных расчетов мерзлых оснований значение Tbf допускается принимать по табл. 2 в зависимости от вида грунта и концентрации порового раствора сps, доли единицы, определяемой по формуле

,                                                                          (2)

где Ds степень засоленности грунта, доли единицы, устанавливаемая по ГОСТ 2510082;

wtot суммарная влажность мерзлого грунта, доли единицы.

Таблица 2

Температура начала замерзания грунта Tbf

 

Грунты

Температура начала замерзания грунта Tbf, ° С, при концентрации порового раствора cps, доли единицы

 

0

0,005

0,01

0,02

0,03

0,04

Песчаные

0

0,6

0,8

1,6

2,2

2,8

Пылевато-глинистые:

 

 

 

 

 

 

супеси

0,1

0,6

0,9

1,7

2,3

2,9

суглинки и глины

0,2

0,6

1,1

1,8

2,5

3,2

 

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5    |    Часть 6    |    Часть 7




Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!

Все СНиПы >>    СНиПы «Бетон, ЖБИ, кирпич, фасадные материалы >>



Смотрите также: Каталог «Бетон, ЖБИ, кирпич, фасадные материалы» >>
Компании «Бетон, ЖБИ, кирпич, фасадные материалы» >>
Фотогалереи (8) >>
Статьи (148) >>
ГОСТы (206) >>
СНиПы (14) >>
ВСН (5) >>
Задать вопрос в форуме >>
Подписка на рассылки >>
наверх