Все СНиПы >> СНиПы«Архитектура и дизайн»

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5

Пособие по проектированию жилых зданий Вып. 3 Часть 1. Конструкции жилых зданий (к СНиП 2.08.01-85) Часть 2

Монолитные и сборно-монолитные здания

2.19. Монолитные и сборно-монолитные жилые здания рекомендуется проектировать на основе стеновых конструктивных систем. При технико-экономическом обосновании допускается применение ствольных и каркасно-ствольных конструктивных систем.

Для монолитных и сборно-монолитных зданий с монолитными или сборно-монолитными наружными стенами рекомендуется применять перекрестно-стеновую конструктивную систему с несущими поперечными и продольными стенами, в том числе наружными. Монолитные и сборно-монолитные перекрытия рассматривают как защемленные по контуру.

Сборные перекрытия рассматривают как защемленные стенами и опертые по двум или трем сторонам.

Для сборно-монолитных зданий со сборными наружными стенами при наличии сквозных внутренних продольных стен рекомендуется принимать перекрестно-стеновую систему с ненесущими наружными стенами. При наличии отдельных продольных диафрагм жесткости применяется поперечно-стеновая конструктивная система, при которой перекрытия рассматриваются как защемленные стенами по двум противоположным сторонам.

Для сборно-монолитных зданий, с защемленными по двум сторонам монолитными перекрытиями, допускается применять поперечно-стеновую конструктивную систему с плоской рамой или радиальным расположением стен.

В зависимости от назначения и размеров помещений, располагаемых в первых этажах монолитных и сборно-монолитных зданий, может быть использована стеновая или каркасная конструктивные системы:

стеновые системы с полным совпадением осей нижних и верхних этажей;

стеновые системы с неполным (частичным) совпадением осей стен нижних и верхних этажей;

каркасные системы с полным совпадением осей каркаса нижних и стен верхних этажей;

каркасные системы с неполным (частичным) совпадением осей каркаса нижних и стен верхних этажей.

Стеновые системы с полным совпадением осей стен нижних и верхних этажей следует применять, если в нижних этажах жилых зданий размещаются предприятия, не требующие больших помещений.

Стеновые системы с неполным (частичным) совпадением осей стен нижних и верхних этажей целесообразно применять, если в нижних этажах расположены помещения больших размеров (пролет 9 м и более) и допускается наличие опор в виде пилонов, колонн сложного профиля, арок, стен, лестнично-лифтовых узлов.

Вертикальные конструкции могут проектироваться с переменным по длине элемента сечением, например, с сужающимися или расширяющимися кверху пилонами. Геометрию пилонов целесообразно назначать с таким расчетом, чтобы их бетонирование можно было осуществить в том же комплекте опалубки, что и остальных стен здания.

Для возведения конструкций нижних нежилых этажей рекомендуется применять мелкощитовые и крупнощитовые опалубки.

2.20. Связи между сборными плитами перекрытий, опирающимися на монолитные стены, рекомендуется проектировать по указаниям п. 2.8 в виде свариваемых арматурных выпусков или закладных деталей или замоноличиваемых бетоном арматурных петлевых выпусков, соединяемых без сварки.

Сечение связей в вертикальных соединениях несущих стен монолитных и сборно-монолитных зданий рекомендуется проектировать из условия восприятия или усилий отрыва в пределах высоты одного этажа не менее 10 кН (1 тс) на 1 м длины наружной стены, вдоль фасада.

Конструктивное решение связей и вертикальных соединений рекомендуется принимать в зависимости от последовательности возведения наружных и внутренних стен:

при первоначальном возведении внутренних монолитных стен на их торцах рекомендуется устраивать шпоночные соединения и горизонтальные металлические связи не менее, чем в двух уровнях (вверху и внизу этажа);

при первоначальном возведении сборных наружных стен горизонтальные металлические связи, соединяющие их с внутренними стенами, устанавливают в опалубку и бетонируют с ними.

В зависимости от технологии возведения здания, способов разбивки его на захватки и применения одного или двух видов бетонов возможна различная последовательность бетонирования поперечных и продольных монолитных стен.

Вертикальное соединение сопрягаемых стен возможно трех типов: торцовое, фронтальное, фронтально-торцовое.

При торцовом соединении (рис. 15, а, б, в) между щитами опалубки устанавливают вертикальный отсекатель в виде щита, с помощью которого можно выполнить торец любой формы (гладкий, со шпонками, волнистый), и через специальные вырезы за грани внутренних стен пропускают горизонтальную арматуру.

При фронтальном соединении (рис. 15, г, д, е) в местах примыкания монолитных стен ортогональных направлений на плоскости крупнощитовой опалубки устанавливают шпонкообразователи.

При фронтально-торцовом соединении (рис. 15, ж), применяемом при использовании в сопрягаемых стенах бетонов разных видов или классов по прочности на сжатие, между щитами опалубки внутренних стен в месте их примыкания к опалубке наружных стен устанавливают разделяющую мелкоячеистую сетку. Как правило, сетка устанавливается на пространственном арматурном каркасе, который находится на пересечении наружной и внутренней стен. Наружные стены бетонируют на всю высоту этажа, затем бетонируют внутренние стены.

Рис. 15. Вертикальные торцевые (а — в), фронтальные (г е) и фронтально-торцевые (ж) узлы

а ¾ установка опалубки поперечных стен; б ¾ вид торца поперечной стены и шпонками; в, е, ж ¾ общий вид соединения поперечных и продольных стен; г ¾ устройство арматурных каркасов со шпонкообразователями между щитами опалубки; д ¾ устройство арматурных выпусков в шпонке

1 ¾ щиты опалубки; 2 ¾ разделительный торцевой щит; 3 ¾ поперечная стена; 4 ¾ вертикальный арматурный каркас; 5 ¾ арматурные горизонтальные стержни; 6 ¾ продольная стена; 7 ¾ шпонкообразователь из пенополистирола, 8 — разделительная сетка

2.21. Узлы сопряжения плит перекрытия с монолитными стенами в зависимости от способа передачи сжимающих усилий и типа плит перекрытий рекомендуется проектировать контактными, платформенными или комбинированными.

В контактном узле сжимающие усилия передаются только через монолитный бетон несущей стены. В контактном узле можно применять монолитные (рис. 16, а, 17, а), сборные (рис. 16, в — 16, е, 17, в — 17, е) и сборно-монолитные (рис. 16, б и 17, б) перекрытия, включающие сборные плиты-скорлупы, которые выполняют функции оставляемой опалубки. Сборные плиты перекрытий рекомендуется заводить за грань стены на величину не более 2 см. До замоноличивания стыка сборные элементы перекрытий должны опираться на временные опоры.

Рис. 16. Контактные узлы внутренних монолитных стен

а — при монолитных перекрытиях; б — при сборно-монолитных перекрытиях со сборными скорлупами, выполняющими функции оставляемой опалубки; в — при сборных сплошных плитах перекрытия и связях посредством сварки выпусков; г — то же, при петлевых связях; д — при сборных многопустотных плитах перекрытия и связях посредством сварки выпусков; е ¾ то же, при петлевых связях

1 — монолитная стена; 2 — монолитное перекрытие; 3 — технологический шов; 4 — арматура плиты; 5 — сборная скорлупа, выполняющая функции оставляемой опалубки; 6 — опорная арматура сборно-монолитной плиты; 7 — сборная сплошная плита; 8 — сварные связи плит; 9 — горизонтальная арматура в виде отдельных стержней; 10 — петлевые связи; 11 — сборная многопустотная плита; 12 — заглушка

Рис. 17. Контактные узлы наружных монолитных стен

а — при монолитных плитах перекрытия; б — при сборно-монолитных плитах перекрытия со сборными скорлупами, выполняющими функции оставляемой опалубки; в — при сборных сплошных плитах перекрытия и связях со стенами посредством отдельных стержней; г — то же, при петлевых связях; д — при сборных многопустотных плитах перекрытия и связях со стенами посредством отдельных стержней; е — то же, при петлевых связях

В платформенном узле сжимающие усилия передаются через опорные участки плит перекрытий (рис. 18, а — 18, д).

Для организации платформенного узла могут применяться сборные (рис. 18, а — 18, г) и сборно-монолитные перекрытия (рис. 18, д), включающие сборные плиты-скорлупы, выполняющие функции оставляемой опалубки.

Платформенные узлы на рис. 18, в рекомендуется применять в зданиях, высотой не более четырех этажей.

Рис. 18. Платформенные узлы внутренних монолитных стен

а — при сборных сплошных перекрытиях и связях посредством сварки закладных деталей; б — то же, при связях посредством сварки выпусков; в — при сборных многопустотных плитах перекрытия с заделкой пустот бетонными пробками и связях посредством сварки монтажных петель или скруток; г — то же, с «усиленными» торцами плит перекрытия; д — при сборно-монолитных перекрытиях со сборными скорлупами, выполняющими функции оставляемой опалубки

1 — 12 — см. рис. 16; 13 — растворный шов; 14 — бетонная пробка; 15 — связи многопустотных плит (отдельные стержни, приваренные к монтажным петлям или скрутки)

Комбинированные узлы (рис. 19 — 21) образуются сочетанием контактного и платформенного узлов.

Рис. 19. Комбинированные узлы внутренних монолитных стен

а — при плитах со вскрытыми пустотами и связями посредством сварки монтажных петель или скруток; б — то же, при сочетании в узле торца со вскрытыми пустотами и «усиленного» торца; в — то же, при связях в виде каркасов замоноличиваемых в пустотах; г — то же, при вертикальном армировании узла; д — то же, при связях посредством выпусков; е — то же, при сочетании торца со вскрытыми пустотами и «усиленного» торца; ж — при сборно-монолитных перекрытиях со скорлупами, выполняющими функции оставляемой опалубки; з — то же, при вертикальном армировании узла

1 ¾ 15 ¾ см. рис. 16, 18; 16 — монтажные петли; 17 — связи многопустотных плит в виде плоских каркасов замоноличенных в пустоты; 18 ¾ горизонтальная арматура в виде плоского каркаса

Рис. 20. Комбинированные узлы наружных монолитных стен со сборными многопустотными и сборно-монолитными перекрытиями

(1 18 — см. рис. 16, 18, 19)

а — при многопустотных плитах перекрытия со вскрытыми пустотами и связями в виде отдельных стержней, приваренных к монтажным петлям, или скруток; б — то же, при «усиленном» торце; в — то же, при торце со вскрытыми пустотами и связями в виде отдельных стержней арматурных выпусков из плит; г — то же, при «усиленном» торце; д ¾ то же, при торце со вскрытыми пустотами и связями в виде каркасов, замоноличиваемых в пустотах; е — то же, при торце заделанном бетонными пробками и связями в виде отдельных стержней, приваренных к монтажным петлям; ж — при сборно-монолитном перекрытии

Рис. 21. Комбинированные узлы монолитных стен со сборными сплошными плитами перекрытий

а — при прерывистом опирании и связях посредством сварки выпусков; б — то же, при петлевых связях; в, г — при непрерывном опирании и связях в виде отдельных стержней, приваренных к закладным деталям плит или арматурных выпусков; д — при прерывистом опирании и связях в виде отдельных стержней (арматурных выпусков плит); е — то же, при петлевых связях

2.22. Для повышения несущей способности контактных и комбинированных узлов железобетонных стен допускается предусматривать установку в узле вертикальной арматуры.

При многопустотных плитах перекрытия в случае вертикального армирования узлов необходимо предусматривать также горизонтальное армирование каркасами с продольной арматурой диаметром 10 мм класса А-III, устанавливаемыми в пустотах (рис. 19, г) в количестве не менее двух на плиту.

В контактных и комбинированных узлах, приведенных на рис. 21, а, б, д, е, и в платформенных узлах по верху плит растворные швы не применяются. В остальных случаях применение растворного шва под плитами перекрытия обязательно. Полость между торцами плит следует замоноличивать только бетоном, из которого выполняется стена.

Марка раствора определяется расчетом и принимается во всех случаях не более 150 и не менее 50 — в случае производства работ при положительных температурах и не менее 100 — в случае производства работ при отрицательных температурах. При применении узлов с вертикальным армированием (см. рис. 19, г) плиты перекрытия (сборные плиты-скорлупы) рекомендуется укладывать на раствор.

2.23. В узлах сопряжения плит перекрытия с монолитными стенами рекомендуется предусматривать стальные связи плит перекрытия между собой и со стенами, стен смежных этажей между собой, а также горизонтальное конструктивное армирование узлов в продольном направлении.

При монолитных и сборно-монолитных плитах со сборными скорлупами, выполняющими функции оставляемой опалубки, функции связей плит между собой и со стенами, а также горизонтального армирования узла выполняет опорная арматура плит перекрытий (см. рис. 16, а, б; 17, а, б; 18, д; 19, ж; и 20, ж).

Сборные плиты перекрытия рекомендуется соединять между собой посредством сварки выпусков (см. рис. 16, в, д; 18, б; 19, д, е; 21, а), закладных деталей (см. рис. 18, а), монтажных петель (см. рис. 18, в, г; 19, а, б), бессварных соединений посредством перехлеста петлевых выпусков (см. рис. 16, г; 21, б), а также арматурных каркасов замоноличиваемых в пустотах многопустотных плит (см. рис. 19, в, г).

Сборные плиты перекрытий соединяются с монолитными стенами при одностороннем сопряжении посредством анкеров в виде отдельных стержней (см. рис. 17, в ,д, 20, а, б, в, г, е; 21, в, г, д), петлевых выпусков (см. рис. 17, г, е; 21, е) или арматурных каркасов, замоноличиваемых в пустотах многопустотных плит перекрытия (см. рис. 20, д).

При бессварных петлевых связях сборных плит перекрытия горизонтальная арматура, устанавливаемая в межпетлевом пространстве, служит для усиления анкеров петлевых выпусков и назначается в количестве четырех стержней (см. рис. 16, г, е) при плитах перекрытия, защемленных на опорах (контактные узлы), и в количестве двух стержней (см. рис. 21, б) — при свободно-опертых плитах (комбинированные узлы). При соединении их со стенами во всех случаях устанавливаются два горизонтальных стержня (см. рис. 17, г, е; 21, е).

Горизонтальное армирование узлов в продольном направлении при сборных плитах перекрытия, за исключением варианта с петлевыми связями, рекомендуется производить плоскими каркасами или отдельными стержнями. Горизонтальная конструктивная арматура назначается диаметром 10 мм класса А-III.

2.24. Связи бетонных несущих стен смежных этажей выполняют посредством перепуска конструктивной арматуры, устанавливаемой в местах их пересечения. При сборных плитах перекрытия, имеющих непрерывное опирание на стены, перепуск арматуры производится отдельными стержнями, устанавливаемыми по оси стены.

Конструкции нижних этажей зданий многоцелевого назначения

2.25. Конструкции нижних нежилых этажей могут проектироваться на основе стеновой, каркасной или каркасно-стеновой конструктивных систем.

В зависимости от конкретной градостроительной и технико-экономической ситуации конструкции могут выполняться сборными, монолитными или кирпичными.

2.26. Стеновые конструктивные системы рекомендуется принимать:

а) для встроенных учреждений и предприятий (помещений для приемных пунктов, столов заказа, небольших помещений бытового обслуживания, культурно-массового назначения);

б) для встроенно-пристроенных учреждений обслуживания массового назначения (продовольственные и непродовольственные магазины, кафе и закусочные общего типа, комплексные предприятия бытового обслуживания, отделения связи и пр.). Во встроенной части жилого дома следует располагать подсобные помещения, а залы и салоны — в пристроенных вдоль фронта здания объемах.

2.27. При стеновой конструктивной системе в нижних нежилых этажах рекомендуется повторять схему расположения стен верхних этажей. В крупнопанельных зданиях высотой 10 этажей и менее с одинаковой высотой жилых и нежилых этажей проемы в нижних этажах рекомендуется принимать шириной не более 3 м — при шаге поперечных стен до 3,6 м и не более 2,4 м — при шаге поперечных стен около 6 м. Для увеличения ширины проемов в таких зданиях необходимо предусматривать устройство технического этажа, в пределах которого располагать нетиповые конструкции, обеспечивающие перераспределение усилий от конструкций верхних этажей. Увеличение толщины и прочности стен первого этажа мало влияет на ширину проема.

При высоте первого этажа 3,3 м и более для увеличения ширины проемов рекомендуется проектировать панели с арочными перемычками. При таких перемычках, имеющих высоту в середине пролета не менее 0,5 м, а в зданиях высотой 10 и менее этажей допускается предусматривать проемы шириной до 4 м при шаге поперечных стен 3 и 3,6 м.

При необходимости применения более широких проемов рекомендуется увеличение прочности панелей первого этажа; в таких зданиях нет конструктивной необходимости в устройстве технического этажа.

2.28. Каркасные конструктивные системы в нижних нежилых этажах рекомендуется проектировать в следующих случаях:

для встроенных учреждений и предприятий, имеющих зальные помещения;

для встроенно-пристроенных учреждений и предприятий с залами, глубина которых превышает ширину жилого дома (15 — 20 м), с торговой площадью от 650 до 1000 м.

При проектировании пристроенных (в варианте встроенно-пристроенных) следует преимущественно использовать каркасные конструкции по каталогам типовых серий.

2.29. В зависимости от объемно-планировочного решения и функционального назначения здания каркасные конструкции нижних этажей рекомендуется проектировать в виде:

сборной или монолитной балочной клетки в пределах технического этажа с расположением балок под каждой несущей стеной вышележащих этажей. Конструктивная высота главных и второстепенных балок, определяемая высотой технического этажа, должна обеспечивать надежное и экономичное решение;

сборно-монолитного несущего «стола» с последующим расположением на нем стен вышележащих этажей.

2.30. При несоосном решении колонн каркаса нижних этажей и несущих стен верхних этажей устройство сборной балочной клетки из стен технического этажа рекомендуется в зданиях высотой до 10 этажей, где это решение более экономично по сравнению со сборно-монолитным столом. При большей этажности рекомендуется проектировать переходную конструкцию монолитной либо сборно-монолитной.

При каркасном решении первых этажей устойчивость и восприятие горизонтальных нагрузок рекомендуется обеспечивать стенами лестничных клеток, а в случае необходимости также дополнительными диафрагмами жесткости, и созданием диска перекрытий при помощи связей между плитами.

2.31. Расчет конструкций нижних нежилых этажей рекомендуется выполнять по прил. 3.

3. ПРИНЦИПЫ РАСЧЕТА НЕСУЩИХ КОНСТРУКЦИЙ

3.1. Конструкции жилых зданий проверяют расчетом по двум группам предельных состояний:

первая группа — по потере несущей способности или непригодности к эксплуатации;

вторая группа — по непригодности к нормальной эксплуатации.

Расчетом по первой группе предельных состоянии проверяются:

а) все конструкции здания для предотвращения разрушений при действии силовых воздействий в процессе строительства и расчетного срока эксплуатации здания, в том числе для предотвращения прогрессирующего обрушения в случае локального разрушения несущих стен в результате аварийных воздействий типа взрывов бытового газа, пожара, наезда тяжелого транспорта и т. п., а сборные конструкции, кроме того, для предотвращения разрушения при их изготовлении и перевозке;

б) основание здания для предотвращения потери его несущей способности при совместном действии вертикальных и горизонтальных нагрузок.

Расчетом по второй группе предельных состояний проверяются:

а) здание в целом для ограничения: ускорений колебаний, возникающих при пульсации ветрового напора; деформаций основания; прогибов верха здания;

б) плиты перекрытий и покрытия, лестничные площадки, марши и другие изгибаемые элементы для ограничения их прогибов и раскрытия трещин от вертикальных нагрузок;

в) стены здания для ограничения раскрытия трещин и взаимных смещений стен при действии вертикальных и ветровых нагрузок, неравномерных осадок оснований и температурно-влажностных воздействий.

3.2. Нагрузки и воздействия на конструкции жилых зданий определяют по СНиП 2.01.07—85.

При проектировании полносборных зданий стеновой конструктивной системы рекомендуется учитывать возможное перераспределение усилий, вызванное неодинаковыми деформациями усадки сопрягаемых стен. Для крупнопанельных зданий осевые деформации усадки esh стеновых панелей можно определять по табл. 4.

Таблица 4



Вид бетона и способ

Осевые относительные деформации усадки esh×105 для бетона класса по прочности на сжатие

формования

В2,5 — В3,5

В5 ¾ В7,5

В12,5 ¾ В15

В20 и более

Тяжелый цементный и плотный силикатный бетоны горизонтального формования

¾

¾

35

40

Тяжелый бетон кассетного формования

¾

¾

40

45

Легкий бетон горизонтального формования

35

45

50

¾

Ячеистый:





вид А

50

50

50

¾

вид Б

70

70

70

¾

Примечания: 1. Табличные значения esh определяют деформации усадки, возникающие только после достижения бетоном проектной прочности по сжатию. Если отпускная прочность панелей ниже проектной, то табличные значения следует умножать на коэффициент 1,2. 2. Для районов со средней относительной влажностью воздуха 40 % и ниже, относимых согласно требованиям СНиП II-3-79** к «сухим», табличные значения esh следует увеличивать на 30 %. 3. Для панелей толщиной 20 см табличные значения следует умножать на коэффициент 0,8 при толщине 30 см — на 0,65, при толщине 40 см — на 0,55. 4. Коэффициенты по пп. 1—3 учитываются независимо. 5. К ячеистым бетонам вида А относятся автоклавные бетоны на цементном или смешанном вяжущем; вида Б — автоклавные бетоны на известковом вяжущем и безавтоклавные.

3.3. Жилые здания рекомендуется проектировать так, чтобы ускорения колебаний конструкций зданий, возникающие в результате пульсаций скоростного напора ветра, не превышали 0,1 м/с2. При определении величины ускорения учитывается расчетное значение ветровой нагрузки с коэффициентом перегрузки, равным единице. Для зданий стеновой конструктивной системы высотой менее 50 м разрешается не проверять значения ускорений.

3.4. Для зданий, рассчитываемых на совместное действие вертикальных и горизонтальных нагрузок по недеформированной схеме, прогиб верха здания с учетом податливости основания рекомендуется принимать не более 0,001 высоты здания. При расчете здания по деформированной схеме значение прогиба здания не ограничивается.

Предельные прогибы из плоскости плит перекрытий и панелей несущих стен принимаются согласно указаниям СНиП 2.03.01—84. Прогиб несущих стен из их плоскости допускается не проверять.

3.5. Предельное раскрытие трещин в сборных железобетонных элементах ограничивается СНиП 2.03.01—84. Взаимные сдвиги сборных элементов в стыках рекомендуется ограничивать следующими значениями: при длительном сдвиге — 0,6 мм при кратковременном — 0,8 мм, а раскрытие трещин в бетоне омоноличивания стыковых соединений, имеющих антикоррозионное покрытие — 1 мм.

Кратковременное раскрытие трещин (взаимный сдвиг панелей) определяется суммой постоянных, длительных и кратковременных нагрузок; длительное раскрытие трещин (сдвиг) — суммой постоянных и длительных нагрузок.

Раскрытие трещин, не пересекающих рабочую арматуру панелей, ограничивается из условия обеспечения необходимой звукоизоляции (для внутренних конструкций) или тепло- и водоизоляции (для наружных конструкций). Для панелей не допускается длительное раскрытие сквозных трещин.

Предельное раскрытие трещин в сборных элементах ограничивается СНиП 2.03.01—84.

3.6. Значения предельных деформаций основания зданий регламентируется СНиП 2.02.01—83.

Возникающие вследствие деформации основания крены здания не должны вызывать отклонения лифтовых шахт от вертикали, превышающие значения, установленные государственными стандартами. Предельно допустимые значения совместных неравномерных деформаций основания и здания устанавливаются расчетом исходя из обеспечения необходимой прочности, устойчивости и трещиностойкости конструкций.

При выполнении конструктивных требований, изложенных в настоящем Пособии, рекомендуется принимать без расчета следующие допустимые значения неравномерных деформаций основания:

а) для зданий перекрестно-стеновой и продольно-стеновой конструктивных систем:

относительный прогиб или выгиб продольных стен (в долях от длины изгибаемого участка) — 0,0008;

относительная разность осадок соседних продольных стен — 0,0016;

б) для зданий поперечно-стеновой конструктивной системы с ненесущими наружными стенами относительно разности осадок соседних поперечных стен — 0,0016.

При несущих наружных стенах или при наличии сквозных внутренних продольных стен предельные неравномерности деформаций для зданий с поперечными несущими стенами принимают по п. 3.6, а.

С указанными предельными значениями неравномерных деформаций сопоставляются деформации основания, подсчитанные без учета влияния жесткости конструкций здания на перераспределение нагрузок на основание.

3.7. При расчете конструкций и соединений следует учитывать коэффициенты надежности по назначению gп, принимаемые согласно Правилам учета степени ответственности зданий и сооружений при проектировании конструкций равными:

0,95 — для жилых зданий высотой от 2 до 17 этажей включительно, а также высотой до 25 этажей при расчете по деформируемой схеме;

1 — для зданий высотой более 17 этажей при расчете по недеформированной схеме.

На коэффициент надежности по назначению умножают расчетные усилия или делят значения сопротивления материала конструкций.

3.8. Усилия в конструкциях рекомендуется определять, используя, расчетные схемы и предпосылки, наиболее полно отвечающие условиям действительной работы конструкций. При определении усилий в сборных конструкциях рекомендуется учитывать податливость стыковых соединений. Деформативные характеристики соединений сборных элементов разрешается принимать по указаниям прил. 4 настоящего Пособия.

При использовании приближенных методов расчета рекомендуется рассматривать два варианта напряженно-деформированного состояния конструкций, которые соответствуют наименьшей и наибольшей возможной жесткости (податливости) элементов стыковых соединений и связей, а в качестве расчетных принимать наибольшие значения усилий по указанным двум вариантам расчета.

Расчетные схемы

3.9. Расчетные схемы бескаркасных зданий классифицируются:

по характеру учета пространственной работы — на одно-, двух- и трехмерные;

по виду неизвестных — на дискретные, дискретно-континуальные и континуальные;

по виду конструкции, положенной в основу расчетной схемы, — на стержневые, пластинчатые, комбинированные.

3.10. При одномерной расчетной схеме здание рассматривается как тонкостенный стержень или система стержней, упруго или жестко защемленных в основании. Предполагается, что поперечный контур стержня (системы стержней) неизменяем.

При двухмерной расчетной схеме (рис. 22) здание рассматривается как плоская конструкция, способная воспринимать только такую внешнюю нагрузку, которая действует в ее плоскости. Для определения усилий в стенах от горизонтальной нагрузки условно принимается, что все стены, параллельные действию нагрузки, расположены в одной плоскости и имеют одинаковые горизонтальные перемещения в уровне перекрытий.

Рис. 22. Двухмерные (плоские) расчетные схемы бескаркасных зданий

а — вертикальная диафрагма с проемами; б — плоский составной стержень; в ¾ заменяющая рама; г — ферменная модель

При трехмерной расчетной схеме (рис. 23) здание рассматривается как пространственная система, способная воспринимать приложенную к ней пространственную систему сил. Трехмерная расчетная схема наиболее точно учитывает особенности взаимодействия несущих конструкций, но расчет на ее основе наиболее сложен.

Рис. 23. Пространственные (трехмерные) расчетные схемы бескаркасных зданий.

а — фрагмент здания; б — расчетная схема в виде системы консольных стержней; в ¾ то же, пространственного составного стержня; г — пластинчатой системы, рассчитываемой методом конечных элементов

3.11. В дискретных расчетных схемах неизвестные усилия или перемещения определяют для конечного количества узлов системы решения систем алгебраических уравнений. Дискретные расчетные системы наиболее приспособлены к условиям расчета на цифровых вычислительных машинах.

В дискретно-континуальных расчетных схемах неизвестные силовые факторы или перемещения задают в виде непрерывных функций вдоль одной из координатных осей (функциональные неизвестные). Неизвестные функции определяются решением краевой задачи для системы обыкновенных дифференциальных уравнений.

В континуальных расчетных схемах неизвестные силовые факторы или перемещения задают в виде непрерывных функций вдоль двух или трех координатных осей. Неизвестные функции определяются решением краевой задачи для системы дифференциальных уравнений в частных производных.

3.12. При стержневых расчетных схемах несущая система здания рассматривается в виде: набора параллельно расположенных балок с податливыми связями (составная балка), перекрестной системы балок, многоэтажной многопролетной рамы, решетчатой системы и др. Для определения динамических характеристик здания вся несущая система здания может рассматриваться как один консольный стержень.

В расчетных схемах в виде перекрестных стержневых систем несущие балочные элементы расположены в двух плоскостях (вертикальной и горизонтальной). Вертикальные несущие элементы эквивалентны по жесткости стенам, горизонтальные — перекрытиям здания. Принимается, что в местах пересечения несущих элементов их поперечные перемещения одинаковы. Перекрестная расчетная схема позволяет учесть изгиб перекрытий в собственной плоскости. Недостатком расчетной схемы является то, что при ее использовании не учитывается совместность продольных деформаций параллельно расположенных стен, обеспечиваемая в здании стенами перпендикулярного направления. Поэтому расчетную схему рекомендуется применять для расчета на горизонтальные нагрузки только зданий с поперечными несущими стенами при ненесущих продольных стенах.

В рамных расчетных схемах стены с проемами рассматриваются как многоэтажные плоские или пространственные многопролетные рамы. Стойками рам являются глухие (без проемов) участки стен, а ригелями — перемычки и перекрытия. При расчете рекомендуется принимать, что ригели имеют переменную жесткость (бесконечно большую в пределах длины простенков и конечную в местах проемов). Для определения усилий в конструкциях зданий на основе рамной расчетной схемы используют универсальные программы расчета рамных систем.

При решетчатых расчетных схемах здание в целом или его отдельные элементы (например, стены) заменяют системой вертикальных, горизонтальных и наклонных стержней, шарнирно соединенных между собой.

3.13. При пластинчатых расчетных схемах стены и перекрытия здания рассматриваются как система тонкостенных плоскостных элементов (пластинок), соединенных, как правило, в отдельных узлах. Для расчета отдельных пластинок используют численные методы теории упругости (метод сеток, прямые вариационные и др.), а также методы, в которых рассчитываемая непрерывная система заменяется дискретной (метод конечных элементов, ферменной аналогии).

3.14. При комбинированных расчетных схемах здание рассматривается как пластинчато-стержневая система. Такие расчетные схемы рекомендуется применять для расчета зданий, в которых сочетаются каркасные элементы и стены.

3.15. При выборе расчетной схемы рекомендуется учитывать, что все они имеют ограниченные области применения, определяемые положенными в их основу допущениями. Чем меньше допущений использует тот или иной метод, тем шире область его применения, но вместе с тем более трудоемок расчет.

Наиболее совершенными и универсальными являются расчетные схемы в виде пространственной (трехмерной) системы пластин или (и) стержней с дискретными связями между ними. При таких расчетных схемах рекомендуется использовать для расчета метод конечных элементов. Расчет выполняется по специальным программам на ЭВМ

Для расчета зданий, конструктивно-планировочные решения которых не изменяются по высоте (регулярная система) или изменяются небольшое число раз (ступенчато-регулярная система), рекомендуется использовать расчетную схему в виде вертикальной составной системы. В составной системе различают несущие и связевые элементы. Несущими элементами многоэтажного здания являются участки стен, ограниченные в плане проемами или вертикальными стыковыми соединениями, а также стволы (ядра) жесткости, колонны, пилоны и другие вертикальные несущие конструкции. Связевыми элементами являются диски перекрытий, надпроемные перемычки, ригели, соединения сборных элементов в вертикальных стыках. При расчете составных систем дискретные связевые элементы заменяют эквивалентными по жесткости (или податливости) непрерывными и используется дискретно-континуальная расчетная схема. Для бескаркасных зданий несущие элементы составной системы рекомендуется рассматривать как консольные тонкостенные стержни, деформирующиеся за счет продольных усилий сжатия — растяжения, изгиба и сдвига.

3.16. На начальных этапах проектирования здания рекомендуется использовать упрощенные расчетные схемы, позволяющие выполнять расчет без специальных программ.

Для зданий стеновой конструктивной системы расчетную схему рекомендуется принимать в виде системы вертикальных и горизонтальных диафрагм жесткости.

В одну вертикальную диафрагму жесткости рекомендуется включать поперечную или продольную стену здания и примыкающие к ней участки стен перпендикулярного направления. Стены, имеющие по длине в плане разрывы или проемы, перемычки над которыми не обеспечивают перераспределение усилий между простенками, расчленяют на несколько вертикальных диафрагм жесткости.

Размеры в плане простенков, примыкающих к основной стене диафрагмы жесткости, рекомендуется принимать не более 0,1 высоты здания и не более половины расстояния до соседней стены, параллельно стенке рассматриваемого несущего элемента.

3.17. Вертикальную диафрагму жесткости, имеющую регулярно расположенные по высоте проемы, вертикальные стыки или швы бетонирования, рекомендуется рассматривать как составную систему из т столбов, соединенных (т   1) рядами связей сдвига (рис. 24).

Рис. 24. Расчет вертикальной диафрагмы жесткости с проемами (а) как составного стержня (б)

Для каждого столба рекомендуется определять приведенный модуль деформации Еred учитывающий влияние горизонтальных стыков сборных элементов или горизонтальных швов бетонирования стен из монолитного бетона, а также продолжительность действия нагрузки и вычисляемый по формуле

Еred = Еb/(jtb + lc Еb/Het), (1)

где Еb — начальный модуль упругости бетона стены, принимаемый по нормам проектирования бетонных и железобетонных конструкций; для сборных элементов, изготавливаемых в кассетных установках, а также стен из монолитного бетона, возводимых в переставных опалубках, приведенные в нормах значения начальных модулей упругости следует умножать на коэффициент 0,85; jtb — коэффициент, учитывающий влияние ползучести бетона и зависящий от длительности действия нагрузки; при расчете на кратковременные нагрузки коэффициент jtb принимается равным: 1,2 — для тяжелого бетона и легких бетонов при плотном мелком заполнителе; 1,4 — для легких бетонов на пористом мелком заполнителе; 1,1 — для плотных силикатных бетонов;

при расчете на длительно действующие нагрузки коэффициент jtb вычисляется по формуле

jtb = 1 + Сb Eb, (2)

Сb предельная мера ползучести бетона, принимаемая для сборных элементов стен по табл. 5; lс коэффициент податливости горизонтального стыка при сжатии определяемый в зависимости от длительности действия нагрузки по рекомендациям прил. 4.

Таблица 5

Бетон и технология

Предельная мера ползучести Сb × 105, МПа для бетонов класса по прочности на сжатие

изготовления

В2,5

В3,5

B5

В7,5

B12,5

B15

B20

B25

В30

Тяжелый, пропа­ренный при фор­мовании:










горизонтальном

15

11

9

7

5

вертикальном в кассетах

¾

17

13

11

8

¾

Плотный сили­катный

на вяжущем:










известково-пес­чаном

¾

¾

¾

¾

18

12,5

9,5

7

5

известково-шла­ковом

¾

¾

¾

¾

8

6,5

5,5

5

4

Легкий, на по­ристых заполни­телях

50

35

27

22

16

12

9

7

¾

Ячеистый, вида:










А

80

64

36

34

30

¾

¾

¾

¾

Б

110

87

48

47

44

¾

¾

¾

¾

Примечания: 1. Для районов со средней относительной влажностью воздуха 40 % и ниже, относимых согласно требованиям СНиП II-3-79** к «сухим», табличные значения предельной меры ползучести бетона следует увеличивать на 30%. 2. Для элементов толщиной более 20 см приведенные в табл. 5 значения следует умножать на коэффициент 0,9. 3. Виды ячеистых бетонов см. в п. 5 примеч. к табл. 4.

3.18. В составной системе рекомендуется различать жесткие и податливые связи сдвига.

Связь сдвига i между столбами i, i+1 считается жесткой, если выполняется условие

mi ³ 12/n, (3)

mi = , (4)

где пколичество этажей здания; Het высота типового этажа, lti — податливость при сдвиге связи между столбами i и (i+1), которая для связей в виде перемычек равна податливости перемычки при перекосе, а для связей в виде вертикальных стыковых соединений равна податливости связей одного этажа (определяются по рекомендациям прил. 4), gi — параметр, определяемый по формулам:

при расчёте на нагрузки и воздействия, не вызывающие изгиб столбов (например, вертикальные нагрузки, неодинаковая усадка стен),

gi = 1 /(Ei Ai) + 1 /(Ei+1 Ai+1); (5)

при расчете на нагрузки и воздействия, вызывающие изгиб столбов (например, горизонтальные нагрузки),

gi = 1 /(Ei Ai) + 1 /(Ei+1 Ai+1) + L2i / (EiIi + Ei+1 Ii+1); (6)

где Ai, Аi+1площади горизонтальных сечений соответственно столбов i и (i+1); Ei, Ei+1 приведенные модули деформации столбов i и (i+1), вычисляемые по формуле (1).

Столбы, соединенные жесткими связями сдвига, разрешается для расчета объединять в один столб.

Приближенные методы определения усилий в несущих конструкциях зданий стеновой конструктивной системы

3.19. Усилия в конструкциях разрешается определять, используя следующие допущения:

принцип независимости действия сил;

линейную зависимость между напряжениями и вызываемыми ими деформациями (или между усилиями и перемещениями);

линейный характер изменения деформации по длине глухих участков панелей (гипотеза плоских сечений).

3.20. Принцип независимости действия сил при расчете стен на изгиб в их плоскости предполагает расчет по недеформированной схеме. Для зданий, масса которых не изменяется по высоте, расчет на совместное действие вертикальных и горизонтальных нагрузок разрешается выполнять по недеформированной схеме, если выполняется условие

f £ 0,1 М/(рН), (7)

где f — прогиб верха здания от горизонтальной нагрузки, определенный без учета совместного влияния вертикальных и горизонтальных нагрузок; М — изгибающий момент в основании здания от горизонтальной нагрузки; рраспределенная по высоте здания нагрузка от собственного веса конструкций; H — высота здания.

Для зданий перекрестно-стеновой системы высотой 17 и менее этажей условие (7) допускается не проверять; расчет таких зданий разрешается выполнять по недеформированной схеме.

3.21. Усилия, действующие в плоскости стен и перекрытий, и усилия, вызывающие изгиб панелей из плоскости, допускается определять независимо. При этом усилия, действующие в плоскости конструкций, разрешается определять из рассмотрения плоского напряженного состояния, считая, что изгиб из плоскости отсутствует. Усилия, вызывающие изгиб стен из плоскости, определяют, считая стены и перекрытия недеформируемыми в собственной плоскости.

3.22. Усилия в статически неопределяемой системе здания, найденные исходя из линейной зависимости между напряжениями и вызываемыми ими деформациями, допускается корректировать путем введения самоуравновешенных внутренних сил, учитывающих частичное перераспределение усилий за счет нелинейной работы конструкций. При этом необходимо, чтобы поперечные силы в расчетных сечениях стен изменялись не более чем на 30 %.

При выполнении расчетов с учетом перераспределения усилий следует конструктивно предотвращать возможность хрупкого разрушения конструкций. С этой целью следует:

перемычки, работающие как связи сдвига между вертикальными несущими элементами, проектировать так, чтобы прочность наклонных сечений превышала прочность нормальных сечений не менее чем в 1,2 раза;

вертикальные стыки сборных элементов стены выполнять в виде железобетонных шпоночных соединений;

не допускать разрушения стены по наклонным сечениям.

3.23. Для определения усилий от вертикальных нагрузок и неодинаковых температурных и усадочных деформаций сопрягаемых стен допускается диафрагмы жесткости рассчитывать независимо, при этом для симметричных в плане зданий принимать, что горизонтальные перемещения в уровне перекрытий равны нулю.

3.24. Усилия в конструкциях здания от постоянных вертикальных нагрузок рекомендуется определять с учетом изменения расчетной схемы здания в процессе его возведения, поэтажного загружения конструкций и перераспределения вертикальных нагрузок вследствие неодинаковой усадки бетона сопрягаемых стен.

Для бескаркасных полносборных зданий разрешается определять усилия от постоянных вертикальных нагрузок исходя из двух расчетных случаев.

В первом случае (зимний монтаж) принимается, что до окончания возведения здания деформации усадки материала стен не возникают, а перераспределение вертикальных нагрузок возможно только между столбами, которые соединены перемычками, являющимися составными частями сборных элементов, или сваркой закладных деталей. Если обеспечено нарастание прочности бетона (раствора) в вертикальных стыках (например, за счет прогрева стыков), то допускается учитывать также сопротивление сдвигу шпоночных соединений сборных элементов.

Усилия в стенах, найденные исходя из указанных допущений, используются для проверки прочности стен в стадии возведения здания, в том числе для проверки прочности стен на момент оттаивания раствора, уложенного в горизонтальные стыки при отрицательных температурах наружного воздуха.

Во втором расчетном случае (летний монтаж) условно принимается, что деформации усадки бетона стен полностью проявляются за время монтажа здания. Усилия в конструкциях определяются с учетом стадийности возведения здания исходя из проектных характеристик бетона (раствора), которым заполнены стыки. При этом рекомендуется считать, что связи сдвига в виде перемычек, являющихся составной частью сборного элемента, включаются одновременно с возведением очередного этажа, а связи сдвига в виде замоноличиваемых бетоном шпоночных соединений включаются с отставанием на два этажа. Время включения связей сдвига в виде сварных соединений закладных деталей следует принимать в зависимости от принятой технологии возведения здания.

Для эксплуатационного (послемонтажного) периода необходимо определять возможное дополнительное перераспределение усилий, вызванное в случае зимнего монтажа влиянием неодинаковой усадки и ползучести материала столбов, а в случае летнего монтажа — только из-за неодинаковой ползучести материала столбов.

Расчетные усилия в столбах принимаются по наибольшим значениям усилий первого и второго расчетных случаев. Указанные усилия суммируются с учетом знаков с усилиями от временных вертикальных и горизонтальных нагрузок, температурных воздействий и неравномерных деформаций основания.

3.25. Расчет конструкций здания на климатические температурные воздействия выполняют с целью определения усилий:

а) в продольных стенах и перекрытиях, возникающих из-за стеснения их температурных деформаций основанием;

б) в наружных и внутренних стенах и их стыках, возникающих из-за неодинаковых температурных деформаций этих стен;

в) в наружных стенах и связях с внутренними конструкциями, возникающих из-за перепада температур по толщине наружных стен.

Усилия, указанные в п. 3.25, а, определяются только для строительного периода; остальные усилия — для эксплуатационного периода.

Усилия от температурных воздействий для периода возведения здания определяются как для неотапливаемого здания. При этом допускается не учитывать перепады температур по толщине ограждающих конструкций.

Расчет на температурные воздействия для эксплуатационного периода производится как для отапливаемого здания.

3.26. При расчете конструкций крупнопанельных зданий рекомендуется учитывать, что при отсутствии вертикальных связей между стеновыми панелями смежных этажей горизонтальные стыки не сопротивляются растягивающим усилиям. В отапливаемом здании при отрицательных температурах наружного воздуха вследствие неодинаковых температурных деформаций наружных и внутренних стен в верхних этажах могут раскрываться горизонтальные стыки, а панели наружных стен полностью передавать нагрузку от собственного веса через вертикальные стыки на внутренние конструкции («зависать» на них). Раскрытие горизонтальных стыков и «зависание» части наружных стеновых панелей на внутренних конструкциях приводит к изменению расчетной схемы.

При расчете здания на температурные воздействия с учетом раскрытия горизонтальных стыков принимается, что по мере увеличения разности средних температур наружных и внутренних стен первоначально раскрываются стыки в верхнем этаже, затем в предшествующем и т. д.

Перераспределение усилий в конструкциях здания вследствие температурного укорочения наружных стен при эксплуатации здания зимой рекомендуется определять в следующей последовательности:

а) от расчетной разности средних температур наружных и внутренних стен Dt определяются усилия в составной системе высотой п этажей; если во всех этажах горизонтальные стыки наружных стен сжаты с учетом усилий от вертикальных нагрузок и температурных воздействий, то найденные усилия являются расчетными; если в верхнем или в нескольких верхних этажах горизонтальные стыки наружной стены оказываются растянутыми, то необходимо вычислить разность относительных температур наружных и внутренних стен Dt1, при которой растягивающие усилия в горизонтальном стыке равны нулю и определить усилия в конструкциях при этой разности температур;

б) количество этажей в расчетной схеме уменьшается на единицу; нагрузка от веса конструкций одного этажа наружной стены прикладывается к внутренним стенам, с которыми наружная стена соединена связями сдвига для новой расчетной схемы (с уменьшенным числом этажей) определяются дополнительные усилия от разности температур (DtDt1); если во всех этажах, кроме верхнего, горизонтальные стыки сжаты, то полученные усилия суммируются с подсчитанными на предыдущем этапе расчета и используются для проверки прочности конструкций; если снова имеются растянутые горизонтальные стыки, то расчет повторяется.

3.27. Для составной системы из двух столбов (с одним рядом продольных связей сдвига) усилия рекомендуется определять по формулам:

Усилия от веса конструкций здания. Продольная сила Тk, перераспределяемая между столбами в уровне перекрытия над этажом i £ h n0 при возведении этажа h £ n

, (8)

где g — параметр, вычисляемый по формуле (3); пколичество этажей здания; n0количество этажей, в которых связи считаются незамкнутыми в момент приложения нагрузки от очередного монтируемого этажа (см. п. 3.24); ej разность относительных деформаций столбов в основной систем (без связей сдвига) от вертикальной нагрузки, прикладываемой на этапе j (в промежутке времени между замыканием связей на этажах j   1 и j); для регулярной по высоте составной системе при j < n

; (9)

при j = n

; (10)

G1, G2 вертикальные нагрузки соответственно на первый и второй столб от веса конструкций одного этажа; , то же, от веса конструкций крыши;

; (11)

m — вычисляется по формуле (2).

Продольные сжимающие силы в уровне перекрытия над i-м этажом, соответственно в первом и втором столбах на момент окончания монтажа здания

; (12)

; (13)

Сдвигающая сила в связях i-го этажа определяется по формулам:

при i < n   n0 Vi = Ti   Ti+1; (14)

при i = n   n0 Vi = Ti.

Усилия от временной нагрузки на перекрытия и кровлю. Продольная сила, перераспределяемая между столбами в уровне перекрытия над i-м этажом

(15)

где e = P1/ (E1A1)   P2/ (E2A2); (16)

, (17)

P1, Р2временная нагрузка соответственно на первый и второй столб от междуэтажного перекрытия; , то же, от крыши.

Продольные сжимающие силы в уровне i-го этажа соответственно в первом и втором столбах

; (18)

; (19)

где сила Тi вычисляется по формуле (15).

Сдвигающие усилия в связях i-го этажа определяют по формулам (12) и (13), принимая h = n, по = 0.

Усилия от неодинаковой усадки стен и температурных воздействий.

Продольная сила, перераспределяемая между стенами в уровне перекрытия над i-м этажом

, (20)

где e1, e2 — деформации усадки бетона соответственно первого и второго столбов, g, r — величины, вычисляемые соответственно по формулам (5) и (11) для случая длительных нагрузок.

4. ФУНДАМЕНТЫ

4.1. Для жилых зданий рекомендуется применять следующие типы фундаментов: ленточные (сборные и монолитные), плитные и свайные. Для зданий каркасной конструктивной системы, а также малоэтажных зданий стеновой конструктивной системы рекомендуется также применять столбчатые фундаменты.

4.2. Сборные ленточные фундаменты рекомендуется проектировать с использованием типовых фундаментных плит по ГОСТ 13580—85 или блоков по ГОСТ 13579—78*. Можно применять сплошную и прерывистую схемы расстановки элементов ленточных фундаментов.

Монолитные ленточные фундаменты рекомендуется выполнять в виде отдельных или перекрестных лент, имеющих прямоугольное или ступенчатое сечение. Для возведения монолитных ленточных фундаментов рекомендуется применять мелкощитовую опалубку. При сухих связных грунтах ленточные фундаменты рекомендуется возводить методом «стена в грунте» или в вытрамбованных котлованах (без опалубки).

При выборе типа ленточного фундамента рекомендуется учитывать следующее: применение сборных фундаментов позволяет снизить продолжительность возведения фундаментов на 20—30 % и уменьшить затраты труда на строительной площадке; суммарные затраты труда на возведение сборных и монолитных фундаментов примерно одинаковые; по стоимостным показателям, энергоемкости, расходу цемента и арматурной стали монолитные фундаменты экономичнее сборных. Поэтому для жилых зданий рекомендуется предпочтительно применять монолитные ленточные фундаменты.

4.3. Плитные фундаменты рекомендуется выполнять в виде монолитных железобетонных плоских или ребристых плит. В зданиях стеновой конструктивной системы плитный фундамент рекомендуется устраивать под всем зданием; в зданиях ствольно-стеновой и каркасно-ствольной конструктивных систем допускается устраивать плитный фундамент только под стволами (ядрами жесткости).

4.4. Столбчатые фундаменты рекомендуется выполнять преимущественно монолитными, в том числе в вытрамбованных котлованах.

4.5. Свайные фундаменты в зависимости от инженерно-геологических и производственных условий и конструктивных особенностей здания могут проектироваться забивными или набивными.

Свайные фундаменты с однорядным расположением свай рекомендуется выполнять безростверковыми. При этом следует проверять расчетом необходимость усиления стен первого этажа и цокольного перекрытия. Допускается применять сборные ростверки, которые опираются на сваи и грунт (низкий ростверк) или только на сваи (высокий ростверк).

Свайные фундаменты с многорядным расположением свай рекомендуется проектировать с низким ростверком из монолитного бетона. При двухрядном расположении свай можно применять сборный ростверк.

4.6. Забивные сваи могут применяться при любых сжимаемых грунтах кроме крупнообломочных и насыпных грунтов, содержащих жесткие включения (остатки разрушенных каменных и бетонных конструкций (строительный мусор и т. п.). Забивные сваи не рекомендуется опирать на заторфованные грунты и торфы, илы, глинистые текучей консистенции и другие сильно сжимаемые грунты. Забивные сваи рекомендуется выполнять из железобетона. Для деревянных панельных зданий допускается применять сваи из круглого леса с необходимой защитой в соответствии с ГОСТ 02022.2—80*.

Железобетонные сваи могут проектироваться цельными или составными. Рекомендуется применять следующие виды свай.

Сваи цельные с предварительно напряженной продольной арматурой (стержневой или из семипроволочных прядей) и с поперечной арматурой сечением от 20´20 до 40´40 см, длиной от 3 до 20 м (ГОСТ 19804.2—79*) рекомендуются при любых основаниях, для которых возможно применение забивных железобетонных свай.

Сваи цельные с предварительно напряженной продольной арматурой без поперечного армирования сплошного сечения 25´25 и 30´30 см, длиной от 5 до 12 м (ГОСТ 19804.4—78*) рекомендуются для оснований, сложенных из выдержанных по толщине (с отклонением не более 1 м) слоев, сложенных песками средней плотности и рыхлыми, супесями пластичной и текучей консистенции. Не рекомендуется применять такие сваи при пучинистых грунтах, если силы пучения превышают значение вертикальной нагрузки на сваю, при наличии сил выдергивания, а также при погружении свай в грунт с помощью вибрации. При высоком свайном ростверке верх сваи может выступать над поверхностью грунта не более чем на 2 м.

Сваи цельные с ненапрягаемой продольной и поперечной арматурой сечением от 20´20 до 40´40 см, длиной от 3 до 16м (ГОСТ 19804.1—79*) можно применять в тех же грунтовых условиях, что и сваи с предварительно напряженной арматурой.

Сваи цельные с круглой полостью с напрягаемой и ненапрягаемой арматурой сечением 25´25, 30´30, 40´40 см, длиной от 3 до 12 м (ГОСТ 19804.3—80*) рекомендуются применять в тех же условиях, что и сваи сплошного сечения без поперечного армирования.

Пирамидальные сваи с малыми углами наклона боковых граней (1—4°) рекомендуется применять как висячие в однородных по глубине грунтах, а также в случаях, когда свая прорезает слой плотного грунта, а ее нижний конец заглубляется в более слабый грунт. Такие сваи не рекомендуется применять при насыпных, мерзлых, просадочных, набухающих и пучинистых грунтах, если силы пучения превышают вертикальную нагрузку на сваю.

Сваи составные сплошного сечения рекомендуется применять в следующих случаях:

при необходимости заглубления свай в несущий слой, кровля которого имеет невыдержанное залегание в пределах контура проектируемого здания;

при отсутствии копрового оборудования, необходимого для погружения свай длиной более 12 — 14 м;

при затруднениях в транспортировании длинномерных свай, вызванных дорожно-транспортными условиями или стесненностью строительной площадки;

при возможности уменьшения сечения сваи, если при этом несущая способность составной сваи соответствует расчетной нагрузке.

4.7. Набивные бетонные сваи рекомендуется применять при необходимости устройства свайных фундаментов, когда нельзя применить забивные сваи по грунтовым условиям (см. п. 4.6) или из-за расположенных вблизи существующих построек, а также на площадках со сложными инженерно-геологическими условиями.

Рекомендуется применять следующие виды набивных свай.

Буронабивные сваи диаметром ствола 40 см и более с уширением в нижней части или без уширения, устраиваемые без крепления или с креплением стенок скважины, рекомендуются для применения при больших сосредоточенных нагрузках и длине сваи 10 м и более. Буронабивные сваи не рекомендуется применять при наличии агрессивных грунтовых или производственных вод.

Набивные сваи устраивают в скважинах, которые пробивают, забивая инвентарные трубы, извлекаемые по мере бетонирования. Такие сваи применяют в водонасыщенных грунтах и при резких изменениях глубины залегания плотных грунтов несущего слоя.

Монолитные свайные фундаменты, устраиваемые в вытрамбованных котлованах с предварительным доуплотнением грунта под острием сваи каменной отсыпкой, рекомендуются при просадочных грунтах I типа в качестве столбчатых фундаментов.

4.8. Для призматических забивных свай, а также пирамидальных с малым уклоном рекомендуется применять сборные оголовки. При однорядном расположении свай рекомендуется применять оголовки цилиндрической формы с внутренней полостью в форме ступенчатого усеченного конуса. Армирование оголовка рекомендуется выполнять арматурным каркасом цилиндрической формы. При двухрядном расположении свай рекомендуется применять прямоугольные оголовки.

4.9. Тип фундамента рекомендуется выбирать на основе технико-экономических сопоставлений вариантов с учетом конкретных инженерно-геологических условий площадки строительства, материально-производственной базы и обеспечения предельно допустимых деформаций основания.

В типовом проекте жилого здания рекомендуется разрабатывать не менее двух вариантов разных типов фундаментов.

 

Часть 1    |    Часть 2    |    Часть 3    |    Часть 4    |    Часть 5




Хотите оперативно узнавать о новых публикациях нормативных документов на портале? Подпишитесь на рассылку новостей!

Все СНиПы >>    СНиПы «Архитектура и дизайн >>



Смотрите также: Каталог «Архитектура и дизайн» >>
Компании «Архитектура и дизайн» >>
Статьи (564) >>
ГОСТы (86) >>
СНиПы (20) >>
Нормативные документы (2) >>
Задать вопрос в форуме >>
Подписка на рассылки >>
Copyright © 1999-2024 ВашДом.Ру - проект группы «Текарт»
По вопросам связанным с работой портала вы можете связаться с нашей службой поддержки или оставить заявку на рекламу.
Политика в отношении обработки персональных данных
наверх